Archive for Mathematical Logic

, Volume 56, Issue 1–2, pp 131–154 | Cite as

\(I_0\) and combinatorics at \(\lambda ^+\)

  • Xianghui ShiEmail author
  • Nam Trang


We investigate the compatibility of \(I_0\) with various combinatorial principles at \(\lambda ^+\), which include the existence of \(\lambda ^+\)-Aronszajn trees, square principles at \(\lambda \), the existence of good scales at \(\lambda \), stationary reflections for subsets of \(\lambda ^{+}\), diamond principles at \(\lambda \) and the singular cardinal hypothesis at \(\lambda \). We also discuss whether these principles can hold in \(L(V_{\lambda +1})\).


Axiom \(I_0\) \(\lambda ^+\)-Aronszajn tree Square Weak square Stationary reflection Good scales Diamond \(\lambda \)-Continuum hypothsis Generic absoluteness \(\lambda \)-Goodness 

Mathematics Subject Classification

03E55 03E35 03E05 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ben-David, S., Magidor, M.: The weak \(\square ^{\ast } \) is really weaker than the full \(\square \). J. Symb. Logic 51(4), 1029–1033 (1986). doi: 10.2307/2273914 MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Cramer, S.S.: Inverse Limit Reflection and the Structure of \({L}({V}_{\lambda +1})\) (2014). (submitted)
  3. 3.
    Cramer, S.S.: Generic Absoluteness from Tree Representations in \({L}({V}_{\lambda +1})\) Cardinals (2015). (submitted)
  4. 4.
    Cramer, S.S.: Inverse limit reflection and the structure of \(L(V_{\lambda +1})\). J. Math. Log. 15(1), 1550001 (2015). doi: 10.1142/S0219061315500014
  5. 5.
    Cummings, J.: Notes on singular cardinal combinatorics. Notre Dame J. Form. Logic 46(3), 251–282 (2005). doi: 10.1305/ndjfl/1125409326. (electronic)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cummings, J.: Iterated forcing and elementary embeddings. In: Handbook of Set Theory, vols. 1, 2, 3, pp. 775–883. Springer, Dordrecht (2010). doi: 10.1007/978-1-4020-5764-9_13
  7. 7.
    Cummings, J., Foreman, M., Magidor, M.: Squares, scales and stationary reflection. J. Math. Log. 1(1), 35–98 (2001). doi: 10.1142/S021906130100003X MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Devlin, K.J.: Constructibility. Perspectives in Mathematical Logic. Springer, Berlin (1984)Google Scholar
  9. 9.
    Dimonte, V., Friedman, S.D.: Rank-into-rank hypotheses and the failure of GCH. Arch. Math. Logic 53(3–4), 351–366 (2014). doi: 10.1007/s00153-014-0369-8 MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Dimonte, V., Wu, L.: A general tool for consistency results related to I1. Eur. J. Math. 2(2), 474–492 (2016). doi: 10.1007/s40879-015-0092-y MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Gitik, M.: Prikry-type forcings. In: Handbook of Set Theory, vols. 1, 2, 3, pp. 1351–1447. Springer, Dordrecht (2010). doi: 10.1007/978-1-4020-5764-9_17
  12. 12.
    Gitik, M., Magidor, M.: The singular cardinal hypothesis revisited. In: Set Theory of the Continuum (Berkeley, CA, 1989), Mathematical Sciences Research Institute Publications, vol. 26, pp. 243–279. Springer, New York (1992)Google Scholar
  13. 13.
    Jensen, R.B.: The fine structure of the constructible hierarchy. Ann. Math. Logic 4, 229–308; erratum, ibid. 4 (1972), 443 (1972). With a section by Jack Silver
  14. 14.
    Kanamori, A.: The Higher Infinite, 2nd edn. Springer Monographs in Mathematics. Springer, Berlin (2003). Large cardinals in set theory from their beginningsGoogle Scholar
  15. 15.
    Kunen, K., Prikry, K.: On descendingly incomplete ultrafilters. J. Symb. Logic 36, 650–652 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Laver, R.: Reflection of elementary embedding axioms on the \(L[V_{\lambda +1}]\) hierarchy. Ann. Pure Appl. Logic 107(1–3), 227–238 (2001). doi: 10.1016/S0168-0072(00)00035-X MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Magidor, M., Shelah, S.: The tree property at successors of singular cardinals. Arch. Math. Logic 35(5–6), 385–404 (1996). doi: 10.1007/s001530050052 MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Merimovich, C.: Prikry on extenders, revisited. Isr. J. Math. 160, 253–280 (2007). doi: 10.1007/s11856-007-0063-1 MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Shelah, S.: On successors of singular cardinals. In: Logic Colloquium ’78 (Mons, 1978), Studies in Logic and the Foundations of Mathematics, vol. 97, pp. 357–380. North-Holland, Amsterdam (1979)Google Scholar
  20. 20.
    Shelah, S.: Cardinal Arithmetic, Oxford Logic Guides, vol. 29. The Clarendon Press/Oxford University Press, New York (1994). Oxford Science PublicationsGoogle Scholar
  21. 21.
    Shi, X.: Axiom \({I}_0\) and higher degree theory. J. Symb. Logic 80(3), 970–1021 (2015). doi: 10.1017/jsl.2015.15.
  22. 22.
    Solovay, R.M.: Strongly compact cardinals and the GCH. In: Proceedings of the Tarski Symposium (Proceedings of Symposia in Pure Mathematics, Vol. XXV, University of California, Berkeley, CA, 1971), pp. 365–372. American Mathematical Society, Providence (1974)Google Scholar
  23. 23.
    Solovay, R.M., Reinhardt, W.N., Kanamori, A.: Strong axioms of infinity and elementary embeddings. Ann. Math. Logic 13(1), 73–116 (1978). doi: 10.1016/0003-4843(78)90031-1 MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Woodin, W.H.: Notes on an AD-Like Axiom (1990). Seminar Notes Taken by George KafkoulisGoogle Scholar
  25. 25.
    Woodin, W.H.: Suitable extender models II: beyond \(\omega \)-huge. J. Math. Logic 11(2), 115–436 (2011).

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.School of Mathematical SciencesBeijing Normal University, Key Laboratory of Mathematics and Complex Systems, Ministry of EducationBeijingPeople’s Republic of China
  2. 2.Department of MathematicsUniversity of California, IrvineIrvineUSA

Personalised recommendations