Archive for Mathematical Logic

, Volume 55, Issue 7–8, pp 1025–1036 | Cite as

Cofinality of the laver ideal

  • Miroslav Repický


Yurii Khomskii observed that \({{\mathrm{cof}}}(l^0)>\mathfrak {c}\) assuming \(\mathfrak {b}=\mathfrak {c}\) and he asked whether the inequality \({{\mathrm{cof}}}(l^0)>\mathfrak {c}\) is provable in ZFC. We find several conditions that imply some variants of this inequality for tree ideals. Applying a recent result of Brendle, Khomskii, and Wohofsky we show that \(l^0\) satisfies some of these conditions and consequently, \({{\mathrm{cof}}}(l^0)=\mathfrak {d}(^\mathfrak {c}l^0)\ge \mathfrak {d}(^\mathfrak {c}\mathfrak {c})>\mathfrak {c}\). We also prove that if the cellularity of a Boolean algebra B is hereditarily \(\ge \kappa \), then every \(\kappa \)-sequence in \(B^+\) has a \(\kappa \)-subsequence with a disjoint refinement.


Laver ideal Cardinal invariants Disjoint refinements 

Mathematics Subject Classification

Primary 03E17 Secondary 03E15 03E35 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Balcar, B., Vojtáš, P.: Refining systems on Boolean algebras. Set theory and hierarchy theory, V. In: Proceedings of Third Conference on Bierutowice, 1976, pp. 45–58. Lecture Notes in Math., Vol. 619. Springer, Berlin (1977)Google Scholar
  2. 2.
    Brendle, J., Khomskii, Y., Wohofsky, W.: Cofinalities of Marczewski ideals (in preparation)Google Scholar
  3. 3.
    Balcar, B., Simon, P.: Disjoint refinements. In: Donald Monk, J., Robert, B. (eds.) Handbook of Boolean algebras, vol. 2. North-Holland Publishing Co., Amsterdam (1989)Google Scholar
  4. 4.
    Dečo, M., Repický, M.: Strongly dominating sets of reals. Arch. Math. Logic 52(7–8), 827–846 (2013)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Goldstern, M., Repický, M., Shelah, S., Spinas, O.: On tree ideals. Proc. Am. Math. Soc. 123(5), 1573–1581 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Khomskii, Y.: E-mail communication with M. Dečo (2014)Google Scholar
  7. 7.
    Koppelberg, S.: Handbook of Boolean algebras, vol. 1. Donald Monk, J., Robert, B. (eds.) North-Holland Publishing Co., Amsterdam (1989)Google Scholar
  8. 8.
    Kułaga, W.: On fields and ideals connected with notions of forcing. Coll. Math. 105(2), 271–281 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Repický, M.: Mycielski ideal and the perfect set theorem. Proc. Am. Math. Soc. 132(7), 2141–2150 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Repický, M.: Bases of measurability in Boolean algebras. Math. Slovaca 64(6), 1299–1334 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Rosłanowski, A.: On game ideals. Colloq. Math. 59(2), 159–168 (1990)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Mathematical InstituteSlovak Academy of SciencesKošiceSlovak Republic

Personalised recommendations