Advertisement

Archive for Mathematical Logic

, Volume 55, Issue 7–8, pp 955–975 | Cite as

Structural completeness in propositional logics of dependence

  • Rosalie Iemhoff
  • Fan Yang
Article

Abstract

In this paper we prove that three of the main propositional logics of dependence (including propositional dependence logic and inquisitive logic), none of which is structural, are structurally complete with respect to a class of substitutions under which the logics are closed. We obtain an analogous result with respect to stable substitutions, for the negative variants of some well-known intermediate logics, which are intermediate theories that are closely related to inquisitive logic.

Keywords

Structural completeness Dependence logic Inquisitive logic Intermediate logic 

Mathematics Subject Classification

03F03 03B55 03B60 03B65 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Burgess, J.P.: A remark on henkin sentences and their contraries. Notre Dame J. Form. Log. 44(3), 185–188 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Chagrov, A., Zakharyaschev, M.: Modal Logic. Oxford University Press, New York (1997)zbMATHGoogle Scholar
  3. 3.
    Ciardelli, I.: Dependency as question entailment. In: Abramsky, S., Kontinen, J., Väänänen, J. (eds.) Dependence Logic: Theory and Application, Progress in Computer Science and Applied Logic, pp. 129–181. Birkhauser (2016)Google Scholar
  4. 4.
    Ciardelli, I., Roelofsen, F.: Inquisitive logic. J. Philos. Logic 40(1), 55–94 (2011)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Ebbing, J., Hella, L., Meier, A., Müller, J.S., Virtema, J., Vollmer, H.: Extended modal dependence logic. 20th International Workshop. WoLLIC 2013, Proceedings, Lecture Notes in Computer Science, vol. 8071, pp. 126–137. Springer, Berlin (2013)Google Scholar
  6. 6.
    Ghilardi, S.: Unification in intuitionistic logic. J. Symb. Logic 64, 859–880 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Hella, L., Luosto, K., Sano, K., Virtema, J.: The Expressive Power of Modal Dependence Logic. In: Advances in Modal Logic 10, Invited and Contributed Papers from the Tenth Conference on Advances in Modal Logic, College Publications, London, 294–312 (2014)Google Scholar
  8. 8.
    Henkin, L.: Some remarks on infinitely long formulas. Infinitistic Methods. In: Proceedings Symposium Foundations of Mathematics, pp. 167–183. Pergamon, Warsaw (1961)Google Scholar
  9. 9.
    Hintikka, J.: The Principles of Mathematics Revisited. Cambridge University Press, Cambridge (1998)zbMATHGoogle Scholar
  10. 10.
    Hintikka, J., Sandu, G.: Informational independence as a semantical phenomenon. In: Fenstad, R.H.J.E., Frolov, I.T. (eds.) Logic, Methodology and Philosophy of Science, pp. 571–589. Elsevier, Amsterdam (1989)Google Scholar
  11. 11.
    Hodges, W.: Compositional semantics for a language of imperfect information. Log. J. IGPL 5, 539–563 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Hodges, W.: Some strange quantifiers. In: Mycielski, J., Rozenberg, G., Salomaa, A. (eds.) Structures in Logic and Computer Science: A Selection of Essays in Honor of A. Ehrenfeucht, Lecture Notes in Computer Science, vol. 1261, pp. 51–65. Springer, London (1997)CrossRefGoogle Scholar
  13. 13.
    Iemhoff, R.: On the admissible rules of intuitionistic propositional logic. J. Symb. Log. 66, 281–294 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Iemhoff, R.: Consequence relations and admissible rules. Tech. Rep. 314, Department of Philosophy. Utrecht University, Utrecht (2013)Google Scholar
  15. 15.
    Jeřábek, E.: Admissible rules of modal logics. J. Log. Comput. 15, 411–431 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Kontinen, J., Väänänen, J.: A remark on negation in dependence logic. Notre Dame J. Form. Log. 52(1), 55–65 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Kuusisto, A.: A double team semantics for generalized quantifiers logic. J. Logic Lang. Inform. 24(2), 149–191 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Lohmann, P., Vollmer, H.: Complexity results for modal dependence logic. Stud. Logica. 101(2), 343–366 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Metcalfe, G.: Admissible rules: From characterizations to applications. In: Proceedings of WoLLIC 2012, LNCS, vol. 7456, pp. 56–69. Springer (2012)Google Scholar
  20. 20.
    Miglioli, P., Moscato, U., Ornaghi, M., Quazza, S., Usberti, G.: Some results on intermediate constructive logics. Notre Dame J. Form. Log. 30(4), 543–562 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Rozière, P.: Regles admissibles en calcul propositionnel intuitionniste. Ph.D. thesis, Université Paris VII (1992)Google Scholar
  22. 22.
    Rybakov, V.: Admissibility of Logical Inference Rules. Elsevier, Amsterdam (1997)zbMATHGoogle Scholar
  23. 23.
    Sano, K., Virtema, J.: Axiomatizing Propositional Dependence Logics Proceedings of the 24th EACSL Annual Conference on Computer Science Logic, 292–307 (2015)Google Scholar
  24. 24.
    Väänänen, J.: Dependence Logic: A New Approach to Independence Friendly Logic. Cambridge University Press, Cambridge (2007)CrossRefzbMATHGoogle Scholar
  25. 25.
    Wojtylak, P.: On a problem of H. Friedman and its solution by T. Prucnal. Rep. Math. Log. 38, 69–86 (2004)Google Scholar
  26. 26.
    Yang, F.: On extensions and variants of dependence logic. Ph.D. thesis, University of Helsinki (2014)Google Scholar
  27. 27.
    Yang, F., Väänänen, J.: Propositional logics of dependence. Ann. Pure Appl. Log. 167(7), 557–589 (2016)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Philosophy and Religious StudiesUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations