Archive for Mathematical Logic

, Volume 55, Issue 7–8, pp 873–881 | Cite as

Convexity and constructive infima

  • Josef BergerEmail author
  • Gregor Svindland


We show constructively that every quasi-convex uniformly continuous function \(f : \mathrm {C}\rightarrow \mathbb {R}^+\) has positive infimum, where \(\mathrm {C}\) is a convex compact subset of \(\mathbb {R}^n\). This implies a constructive separation theorem for convex sets.


Bishop’s constructive mathematics Brouwer’s fan theorem Convex functions Separating hyperplanes 

Mathematics Subject Classification

03F60 52A41 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We thank the referee and Christian Ittner for helpful comments.


  1. 1.
    Berger, J., Bridges, D.: The fan theorem and positive-valued uniformly continuous functions on compact intervals. N. Z. J. Math. 38, 129–135 (2008)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Berger, J., Svindland, G.: A separating hyperplane theorem, the fundamental theorem of asset pricing, and Markov’s principle. Ann. Pure Appl. Log. 167, 1161–1170 (2016)Google Scholar
  3. 3.
    Bishop, E.: Foundations of Constructive Analysis. McGraw-Hill, New York (1967)zbMATHGoogle Scholar
  4. 4.
    Bishop, E., Bridges, D.: Constructive Analysis. Springer, Heidelberg (1985)CrossRefzbMATHGoogle Scholar
  5. 5.
    Bridges, D., Vîtă, L.S.: Techniques of Constructive Analysis, Universitext. Springer, New York (2006)zbMATHGoogle Scholar
  6. 6.
    Ishihara, H.: Reverse mathematics in Bishop’s constructive mathematics. Philos. Sci Cah. Spec. 6, 43–59 (2006)Google Scholar
  7. 7.
    Julian, W., Richman, F.: A uniformly continuous function on \(\left[0,1\right]\) that is everywhere different from its infimum. Pac. J. Math. 111(2), 333–340 (1984)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of MathematicsLMU MunichMunichGermany

Personalised recommendations