Archive for Mathematical Logic

, Volume 55, Issue 5–6, pp 799–834 | Cite as

Cofinality of normal ideals on \([\lambda ]^{<\kappa }\) I

  • Pierre MatetEmail author
  • Cédric Péan
  • Saharon Shelah


An ideal J on \([\lambda ]^{<\kappa }\) is said to be \([\delta ]^{<\theta }\)-normal, where \(\delta \) is an ordinal less than or equal to \(\lambda \), and \(\theta \) a cardinal less than or equal to \(\kappa \), if given \(B_e \in J\) for \(e \in [\delta ]^{<\theta }\), the set of all \(a \in [\lambda ]^{<\kappa }\) such that \(a \in B_e\) for some \(e \in [a \cap \delta ]^{< \vert a \cap \theta \vert }\) lies in J. We give necessary and sufficient conditions for the existence of such ideals and describe the smallest one, denoted by \(NS_{\kappa ,\lambda }^{[\delta ]^{<\theta }}\). We compute the cofinality of \(NS_{\kappa ,\lambda }^{[\delta ]^{<\theta }}\).


\([\lambda ]^{<\kappa }\) Normal ideal 

Mathematics Subject Classification

03E05 03E55 03E35 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abe, Y.: A hierarchy of filters smaller than \(CF_{\kappa \lambda }\). Arch. Math. Log. 36, 385–397 (1997)CrossRefGoogle Scholar
  2. 2.
    Carr, D.M.: The minimal normal filter on \(P_\kappa \lambda \). Proc. Am. Math. Soc. 86, 316–320 (1982)MathSciNetGoogle Scholar
  3. 3.
    Carr, D.M., Levinski, J.P., Pelletier, D.H.: On the existence of strongly normal ideals on \(P_\kappa \lambda \). Arch. Math. Log. 30, 59–72 (1990)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Carr, D.M., Pelletier, D.H.: Towards a structure theory for ideals on \(P_\kappa \lambda \). In: Steprāns J., Watson S. (eds.) Set Theory and its Applications, Lecture Notes in Mathematics, vol. 1401, pp. 41–54. Springer, Berlin (1989)Google Scholar
  5. 5.
    Donder, H.D., Matet, P.: Two cardinal versions of diamond. Isr. J. Math. 83, 1–43 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Džamonja, M.: On \(P_\kappa \lambda \)-combinatorics using a third cardinal. Radovi Matematički 9, 145–155 (1999)Google Scholar
  7. 7.
    Erdös, P., Hajnal, A., Máté, A., Rado, R.: Combinatorial Set Theory: Partition Relations for Cardinals, Studies in Logic and the Foundations of Mathematics, vol. 106. North-Holland, Amsterdam (1984)zbMATHGoogle Scholar
  8. 8.
    Feng, Q.: An ideal characterization of Mahlo cardinals. J. Symb. Log. 54, 467–473 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Holz, M., Steffens, K., Weitz, E.: Introduction to Cardinal Arithmetic, Birkhäuser Advanced Texts: Basler Lehrbücher. Birkhäuser, Basel (1999)CrossRefzbMATHGoogle Scholar
  10. 10.
    Jech, T.J.: The closed unbounded filter on \(P_\kappa (\lambda )\). Not. Am. Math. Soc. 18, 663 (1971)Google Scholar
  11. 11.
    Kunen, K.: Set Theory, Studies in Logic and the Foundations of Mathematics, vol. 102. North-Holland, Amsterdam (1980)Google Scholar
  12. 12.
    Landver, A.: Singular Baire Numbers and Related Topics. Ph.D. Thesis, University of Wisconsin, Madison (1990)Google Scholar
  13. 13.
    Matet, P.: Un principe combinatoire en relation avec l’ultranormalité des idéaux. C. R. Acad. Sci. Paris Sér. I 307, 61–62 (1988)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Matet, P.: Concerning stationary subsets of \([\lambda ]^ {<\kappa } \). In: Steprāns J., Watson S. (eds.) Set Theory and Its Applications , Lecture Notes in Mathematics, vol. 1401, pp. 119–127. Springer, Berlin (1989)Google Scholar
  15. 15.
    Matet, P.: Partition relations for \(\kappa \)-normal ideals on \(P_\kappa (\lambda )\). Ann. Pure Appl. Log. 121, 89–111 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Matet, P.: Covering for category and combinatorics on \(P_\kappa (\lambda )\). J. Math. Soc. Jpn. 58, 153–181 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Matet, P.: Large cardinals and covering numbers. Fundam. Math. 205, 45–75 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Matet, P., Péan, C., Shelah, S.: Cofinality of normal ideals on \(P_\kappa (\lambda )\) II. Isr. J. Math. 121, 89–111 (2003)Google Scholar
  19. 19.
    Menas, T.K.: On strong compactness and supercompactness. Ann. Math. Log. 7, 327–359 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Shelah, S.: Cardinal Arithmetic, Oxford Logic Guides, vol. 29. Oxford University Press, Oxford (1994)Google Scholar
  21. 21.
    Shelah, S.: The generalized continuum hypothesis revisited. Isr. J. Math. 116, 285–321 (2000)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Laboratoire de Mathématiques, CNRSUniversité de CaenCaen CedexFrance
  2. 2.NexwaysParisFrance
  3. 3.Einstein Institute of MathematicsThe Hebrew University of JerusalemJerusalemIsrael
  4. 4.Department of Mathematics, Hill Center for the Mathematical SciencesRutgers UniversityPiscatawayUSA

Personalised recommendations