Archive for Mathematical Logic

, Volume 55, Issue 1–2, pp 239–294 | Cite as

ZF + DC + AX4

  • Saharon ShelahEmail author


We consider mainly the following version of set theory: “ZF+DC and for every \({\lambda, \lambda^{\aleph_0}}\) is well ordered”, our thesis is that this is a reasonable set theory, e.g. on the one hand it is much weaker than full choice, and on the other hand much can be said or at least this is what the present work tries to indicate. In particular, we prove that for a sequence \({\overline{\delta} = \langle\delta_{s}: s \in Y\rangle, {\rm cf}(\delta_{s})}\) large enough compared to Y, we can prove the pcf theorem with minor changes (in particular, using true cofinalities not the pseudo ones).We then deduce the existence of covering numbers and define and prove existence of a class of true successor cardinals. Using this we give some diagonalization arguments (more specifically some black boxes and consequences) on Abelian groups, chosen as a characteristic case.We end by showing that some such consequences hold even in ZF above.


Set theory Weak axiom of choice pcf Abelian groups 

Mathematics Subject Classification

Primary 03E04 03E25; Secondary 20K30 03E75 20K20 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Eklof, P.C., Mekler, A.: Almost Free Modules: Set Theoretic Methods, North–Holland Mathematical Library, vol. 65, Revised edn. North–Holland Publishing Co., Amsterdam (2002)Google Scholar
  2. 2.
    Dzamonja, M., Shelah, S.: On squares, outside guessing of clubs and \({I_{<f}[\lambda]}\). Fundam. Math. 148, 165–198 (1995). arXiv:math.LO/9510216
  3. 3.
    Gitik M., Köepke P.: Violating the singular cardinals hypothesis without large cardinals Isr. J. Math. 191, 901–922 (2012)zbMATHGoogle Scholar
  4. 4.
    Göbel, R., Trlifaj, J.: Approximations and Endomorphism Algebras of Modules, vols. I, II. de Gruyter Expositions in Mathematics. Walter de Gruyter, Berlin/Boston (2012)Google Scholar
  5. 5.
    Göbel R., Shelah S.: \({\aleph_n}\)-free modules with trivial dual. Results Math. 54, 53–64 (2009)CrossRefMathSciNetzbMATHGoogle Scholar
  6. 6.
    Göbel R., Herden D., Shelah S.: Prescribing endomorphism rings of \({\aleph_n}\)-free modules. J. Eur. Math. Soc. 16, 1775–1816 (2014)CrossRefzbMATHGoogle Scholar
  7. 7.
    Göbel R., Shelah S., Struengmann L.: \({\aleph_n}\)-free modules over complete discrete valuation domains with small dual. Glasg. Math. J. 55, 369–380 (2013)CrossRefMathSciNetzbMATHGoogle Scholar
  8. 8.
    Larson P., Shelah S.: Splitting stationary sets from weak forms of choice. Math. Log. Q. 55, 299–306 (2009)CrossRefMathSciNetzbMATHGoogle Scholar
  9. 9.
    Rubin M., Shelah S.: Combinatorial problems on trees: partitions, Δ-systems and large free subtrees. Ann. Pure Appl. Log. 33, 43–81 (1987)CrossRefMathSciNetzbMATHGoogle Scholar
  10. 10.
    Shelah, S.: Proper Forcing, Lecture Notes in Mathematics, vol. 940, Springer, Berlin, xxix+496 pp (1982)Google Scholar
  11. 11.
    Shelah, S.: Cardinal Arithmetic, Oxford Logic Guides, vol. 29. Oxford University Press, Oxford (1994)Google Scholar
  12. 12.
    Shelah, S.: Combinatorial Background for Non-structure arXiv:1512.04767 [math.LO]
  13. 13.
    Shelah, S.: PCF: The Advanced PCF Theorems. arXiv:1512.07063
  14. 14.
    Shelah, S.: A combinatorial principle and endomorphism rings. I. On p-groups. Isr. J. Math. 49, 239–257 (1984). Proceedings of the 1980/1 Jerusalem Model Theory yearGoogle Scholar
  15. 15.
    Shelah, S.: Black Boxes. arXiv:0812.0656
  16. 16.
    Shelah S.: Products of regular cardinals and cardinal invariants of products of Boolean algebras. Isr. J. Math. 70, 129–187 (1990)CrossRefzbMATHGoogle Scholar
  17. 17.
    Shelah S.: Reflecting stationary sets and successors of singular cardinals. Arch. Math. Log. 31, 25–53 (1991)CrossRefzbMATHGoogle Scholar
  18. 18.
    Shelah, Saharon: Further cardinal arithmetic. Isr. J. Math. 95, 61–114 (1996). arXiv:math.LO/9610226
  19. 19.
    Shelah, S.: The generalized continuum hypothesis revisited. Isr. J. Math. 116, 285–321 (2000). arXiv:math.LO/9809200
  20. 20.
    Shelah, S.: Set theory without choice: not everything on cofinality is possible. Arch. Math. Log. 36, 81–125 (1997). A special volume dedicated to Prof. Azriel Levy. arXiv:math.LO/9512227
  21. 21.
    Shelah, S.: The pcf-theorem revisited. In: Graham, N. (eds) The Mathematics of Paul Erdős, II, Algorithms and Combinatorics, vol. 14, pp. 420–459. Springer (1997). arXiv:math.LO/9502233
  22. 22.
    Shelah, S.: More on the Revised GCH and the Black Box. Ann. Pure Appl. Log. 140, 133–160 (2006). arXiv:math.LO/0406482
  23. 23.
    Shelah, S.: PCF without choice. Arch. Math. Log. submitted. arXiv:math.LO/0510229
  24. 24.
    Shelah, S.: \({\aleph_n}\)-free abelain group with no non-zero homomorphism to \({\mathbb{Z}}\). CUBO Math. J. 9, 59–79 (2007). arXiv:math.LO/0609634
  25. 25.
    Shelah, S.: Models of expansions of \({\mathbb{N}}\) with no end extensions. Math. Log. Q. 57, 341–365 (2011). arXiv:0808.2960
  26. 26.
    Shelah, S.: PCF arithmetic without and with choice. Isr. J. Math. 191, 1–40 (2012). arXiv:0905.3021
  27. 27.
    Shelah S.: Pseudo pcf. Isr. J. Math. 201, 185–231 (2014)CrossRefzbMATHGoogle Scholar
  28. 28.
    Shelah, S.: Quite free complicated abelian groups, PCF and Black Boxes, Isr. J. Math. submittedGoogle Scholar
  29. 29.
    Shelah, S.: Set theory with weak choice: Ax 4 and Abelian groups (in preparation)Google Scholar
  30. 30.
    Shelah, S. and Kojman, The PCF trichotomy theorem does not hold for short sequences, Arch. Math. Log. 39, 213–218 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Einstein Institute of MathematicsThe Hebrew University of JerusalemJerusalemIsrael
  2. 2.Department of MathematicsThe State University of New Jersey, RutgersPiscatawayUSA

Personalised recommendations