Archive for Mathematical Logic

, Volume 54, Issue 7–8, pp 861–870 | Cite as

Some principles weaker than Markov’s principle

  • Makoto Fujiwara
  • Hajime IshiharaEmail author
  • Takako Nemoto


We systematically study several principles and give a principle which is weaker than disjunctive Markov’s principle (MP). We also show that the principle is underivable and strictly weaker than MP in certain extensions of the system EL of elementary analysis.


Markov’s principle Disjunctive Markov’s principle Weak Markov’s principle Independence of premiss schema Church’s thesis 

Mathematics Subject Classification



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ishihara H.: Markov’s principle, Church’s thesis and Lindelöf theorem. Indag. Math. (N.S.) 4, 321–325 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Kohlenbach U.: Applied Proof Theory: Proof Interpretations and Their Use in Mathematics. Springer, Heidelberg-Berlin (2008)Google Scholar
  3. 3.
    Kohlenbach, U.: On the disjunctive Markov principle, Studia Logica. doi: 10.1007/s11225-015-9627-y
  4. 4.
    Luckhardt H.: Über das Markov-Prinzip. Arch. Math. Log. 18, 73–80 (1977)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Mandelkern M.: Constructive complete finite sets. Z. Math. Logik Grundlagen Math. 34, 97–103 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Troelstra A.S.: Metamathematical Investigation of Intuitionistic Arithmetic and Analysis. Springer, Berlin (1973)CrossRefzbMATHGoogle Scholar
  7. 7.
    Troelstra A.S., van Dirk D.: Constructivism in Mathematics, vols. I and II. North-Holland, Amsterdam (1988)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Makoto Fujiwara
    • 1
  • Hajime Ishihara
    • 1
    Email author
  • Takako Nemoto
    • 1
  1. 1.School of Information ScienceJapan Advanced Institute of Science and TechnologyNomi IshikawaJapan

Personalised recommendations