Archive for Mathematical Logic

, Volume 54, Issue 5–6, pp 659–683 | Cite as

A Wadge hierarchy for second countable spaces

Article

Abstract

We define a notion of reducibility for subsets of a second countable T0 topological space based on relatively continuous relations and admissible representations. This notion of reducibility induces a hierarchy that refines the Baire classes and the Hausdorff–Kuratowski classes of differences. It coincides with Wadge reducibility on zero dimensional spaces. However in virtually every second countable T0 space, it yields a hierarchy on Borel sets, namely it is well founded and antichains are of length at most 2. It thus differs from the Wadge reducibility in many important cases, for example on the real line \({\mathbb{R}}\) or the Scott Domain \({\mathcal{P}\omega}\) .

Keywords

Wadge reducibility Wadge hierarchy Relatively continuous relation Admissible representation 

Mathematics Subject Classification

03E15 03D55 03F60 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andretta, A., Louveau, A.: Wadge degrees and pointclasses: Introduction to part III. In: Kechris et al. [13], p. 3Google Scholar
  2. 2.
    Becher, V., Grigorieff, S.: Wadge hardness in Scott spaces and its effectivization. Math. Struct. Comput. Sci. FirstView, 1–26 (2015). doi:10.1017/S0960129513000248
  3. 3.
    Brattka, V.: Recursive and Computable Operations Over Topological Structures. Ph.D. thesis, FernUniversität Hagen (1999)Google Scholar
  4. 4.
    Brattka, V., Hertling, P.: Continuity and Computability of Relations. Fernuniv., Fachbereich Informatik (1994)Google Scholar
  5. 5.
    de Brecht M.: Quasi-Polish spaces. Ann. Pure Appl. Logic 164(3), 356–381 (2013)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Eisenbud, D., Harris, J.: The Geometry of Schemes. Springer, New York (2000). doi:10.1007/b97680
  7. 7.
    Goubault-Larrecq, J.: Non-Hausdorff Topology and Domain Theory—Selected Topics in Point-Set Topology, New Mathematical Monographs, vol. 22. Cambridge University Press, Cambridge (2013)Google Scholar
  8. 8.
    Hertling, P.: Unstetigkeitsgrade von funktionen in der effektiven analysis. Ph.D. thesis, Fernuniv, Fachbereich Informatik (1996)Google Scholar
  9. 9.
    Ikegami, D.: Games in Set Theory and Logic. Ph.D. thesis, Institute for Logic, Language and Computation, Universiteit von Amsterdam (2010)Google Scholar
  10. 10.
    Ikegami, D., Schlicht, P., Tanaka, H.: Continuous Reducibility for the Real Line (2012). UnpublishedGoogle Scholar
  11. 11.
    Kechris A.S.: Classical Descriptive Set Theory, vol. 156. Springer, New York (1995)CrossRefGoogle Scholar
  12. 12.
    Kechris, A.S., Löwe, B., Steel, J.R. (eds.): Wadge Degrees and Projective Ordinals: The Cabal Seminar Volume II, Lecture Notes in Logic, vol. 37. Cambridge University Press, Cambridge (2012)Google Scholar
  13. 13.
    Kreitz C., Weihrauch K.: Theory of representations. Theor. Comput. Sci. 38, 35–53 (1985)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Louveau A., Saint Raymond J.: On the quasi-ordering of Borel linear orders under embeddability. J. Symb. Logic 55(2), 537–560 (1990)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Motto Ros, L., Schlicht, P., Selivanov, V.: Wadge-like reducibilities on arbitrary quasi-Polish spaces. Math. Struct. Comput. Sci. FirstView, 1–50 (2015). doi:10.1017/S0960129513000339
  16. 16.
    Nash-Williams C.S.J.A.: On better-quasi-ordering transfinite sequences. Math. Proc. Camb. Philos. Soc. 64, 273–290 (1968). doi:10.1017/S030500410004281X MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Parovičenko, I.I.: On a universal bicompactum of weight \({\aleph}\) . In: The Mathematical Legacy of Eduard Čech, pp. 93–96. Springer, Berlin (1993)Google Scholar
  18. 18.
    Pauly, A.M., Ziegler, M.A.: Relative computability and uniform continuity of relations. J. Logic Anal. 5 (2013)Google Scholar
  19. 19.
    Saint Raymond J.: Preservation of the Borel class under countable–compact–covering mappings. Topol. Its Appl. 154(8), 1714–1725 (2007)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Schlicht, P.: Continuous Reducibility and Dimension (2012). UnpublishedGoogle Scholar
  21. 21.
    Selivanov V.L.: Towards a descriptive set theory for domain-like structures. Theor. Comput. Sci. 365(3), 258–282 (2006)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Tang A.: Chain properties in p\({\omega}\) . Theor. Comput. Sci. 9(2), 153–172 (1979)CrossRefMATHGoogle Scholar
  23. 23.
    Tang, A.: Wadge reducibility and Hausdorff difference hierarchy in p\({\omega}\) . In: Continuous Lattices, pp. 360–371. Springer, Berlin (1981)Google Scholar
  24. 24.
    van Engelen, F., Miller, A.W., Steel, J.: Rigid Borel sets and better quasiorder theory. Contemp. Math. 65 (1987)Google Scholar
  25. 25.
    Wadge, W.W.: Reducibility and Determinateness on the Baire Space. Ph.D. thesis, University of California, Berkeley (1984)Google Scholar
  26. 26.
    Weihrauch K.: Computable Analysis: An Introduction. Springer, Berlin (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Institut des systèmes d’informationUniversité de LausanneLausanneSwitzerland
  2. 2.LIAFAUniversité Paris Diderot - Paris 7ParisFrance

Personalised recommendations