Advertisement

Archive for Mathematical Logic

, Volume 54, Issue 5–6, pp 571–586 | Cite as

Typical automorphism groups of finite nonrigid structures

  • Vera KoponenEmail author
Article
  • 30 Downloads

Abstract

We work with a finite relational vocabulary with at least one relation symbol with arity at least 2. Fix any integer m > 1. For almost all finite structures (labelled or unlabelled) such that at least m elements are moved by some automorphisms, the automorphism group is \({(\mathbb{Z}_2)^{i}}\) for some \({i \leq (m+1)/2}\); and if some relation symbol has arity at least 3, then the automorphism group is almost always \({\mathbb{Z}_{2}}\).

Keywords

Finite model theory Limit law Random structure Automorphism group 

Mathematics Subject Classification

Primary 03C13 Secondary 60C05 20B25 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahlman O., Koponen V.: Limit laws and automorphism groups of random nonrigid structures. J. Log. Anal. 7(2), 1–53 (2015)Google Scholar
  2. 2.
    Dixon J.D., Mortimer B.: Permutation Groups. Springer, Berlin (1996)CrossRefzbMATHGoogle Scholar
  3. 3.
    Ebbinghaus H-D., Flum J.: Finite Model Theory. 2nd edn. Springer, Berlin (1999)Google Scholar
  4. 4.
    Erdős P., Rényi A.: Asymmetric graphs. Acta Math. Acad. Sci. Hung. 14, 295–315 (1963)CrossRefGoogle Scholar
  5. 5.
    Fagin R.: The number of finite relational structures. Discr. Math. 19, 17–21 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Ford G.W., Uhlenbeck G.E.: Combinatorial problems in the theory of graphs. IV. Proc. Natl. Acad. Sci. 43, 163–167 (1957)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Harary F.: Note on Carnap’s relational asymptotic relative frequencies. J. Symb. Log. 23, 257–260 (1958)CrossRefGoogle Scholar
  8. 8.
    Oberschelp, W.: Strukturzahlen in endlichen Relationssystemen. In: H. A. Schmidt (eds.) Contributions to Mathematical Logic, pp. 199–213. Proceedings of 1966 Logic Colloquium, North-Holland (1968)Google Scholar
  9. 9.
    Rothmaler P.: Introduction to Model Theory. Taylor & Francis, London (2000)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of MathematicsUppsala UniversityUppsalaSweden

Personalised recommendations