Archive for Mathematical Logic

, Volume 54, Issue 5–6, pp 531–553 | Cite as

Intuitionistic fixed point theories over set theories

  • Toshiyasu AraiEmail author


In this paper we show that the intuitionistic fixed point theory FiX i (T) over set theories T is a conservative extension of T if T can manipulate finite sequences and has the full foundation schema.


Fixed point Intuitionistic logic Conservative extension Strictly positive 

Mathematics Subject Classification

03F50 03F99 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arai T.: Consistency proof via pointwise induction. Arch. Math. Logic 37, 149–165 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Arai T.: Some results on cut-elimination, provable well-orderings, induction and reflection. Ann. Pure Appl. Logic 95, 93–184 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Arai T.: Non-elementary speed-ups in logic calculi. Math. Logic Q. 6, 629–640 (2008)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Arai T.: Intuitionistic fixed point theories over Heyting arithmetic. In: Feferman, S., Sieg, W. (eds.) Proofs Categories and Computations. Essays in honor of Grigori Mints, pp. 1–14. College Publications, King’s College London, London (2010)Google Scholar
  5. 5.
    Arai T.: Quick cut-elimination for strictly positive cuts. Ann. Pure Appl. Logic 162, 807–815 (2011)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Arai T.: Proof theory of weak compactness. J. Math. Logic 13, 1350003 (2013)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Arai, T.: Conservations of first-order reflections. J. Symb. Logic 79, 814–825 (2014)Google Scholar
  8. 8.
    Arai, T.: Lifting proof theory to the countable ordinals : Zermelo–Fraenkel’s set theory. J. Symb. Logic 79, 25–354 (2014)Google Scholar
  9. 9.
    Arai, T.: Proof theory of second order indescribability (in preparation)Google Scholar
  10. 10.
    Avigad J.: On the relationship between ATR0 and \({\widehat{\rm ID}_{ < \omega}}\). J. Symb. Logic 61, 768–779 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Barwise J.: Admissible Sets and Structures. Springer, Berlin (1975)CrossRefzbMATHGoogle Scholar
  12. 12.
    Beeson M.: Goodman’s theorem and beyond. Pac. J. Math. 84, 1–16 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Buchholz W.: \({{\it\Omega}_{\mu+1}}\)-rule. In: Buchholz, W., Feferman, S., Pohlers, W., Sieg, W. (eds.) Iterated Inductive Definitions and Subsystems of Analysis: Recent Proof-Theoretical Studies. Lecture Notes in Mathematics, vol. 897, pp. 188–233. Springer, Berlin (1981)CrossRefGoogle Scholar
  14. 14.
    Buchholz W.: Notation system for infinitary derivations. Arch. Math. Logic 30, 277–296 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Buchholz W.: An intuitionistic fixed point theory. Arch. Math. Logic 37, 21–27 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Feferman S.: Iterated inductive fixed-point theories: applications to Hancock’s conjecture. In: Metakides, G. (ed.) Patras Logic Symposion, pp. 171–196. North-Holland, Amsterdam (1982)CrossRefGoogle Scholar
  17. 17.
    Mints, G.E.: Quick cut-elimination for monotone cuts. In: Games, Logic, and Constructive Sets (Stanford, CA, 2000), CSLI Lecture Notes, vol. 161, pp. 75–83. CSLI Publications, Stanford (2003)Google Scholar
  18. 18.
    Rüede C., Strahm T.: Intuitionistic fixed point theories for strictly positive operators. Math. Logic Q. 48, 195–202 (2002)CrossRefzbMATHGoogle Scholar
  19. 19.
    Schindler R., Zeman M.: Fine structure. In: Foreman, M., Kanamori, A. (eds.) Handbook of Set Theory, vol. 1, pp. 605–656. Springer, Berlin (2010)CrossRefGoogle Scholar
  20. 20.
    Takeuti, G.: Proof Theory, 2nd edn. North-Holland, Amsterdam (1987). Reprinted from Dover Publications (2013)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Graduate School of ScienceChiba UniversityChibaJapan

Personalised recommendations