Archive for Mathematical Logic

, Volume 54, Issue 3–4, pp 359–394 | Cite as

Open induction in a bounded arithmetic for TC0



The elementary arithmetic operations \({+,\cdot,\le}\) on integers are well-known to be computable in the weak complexity class TC0, and it is a basic question what properties of these operations can be proved using only TC0-computable objects, i.e., in a theory of bounded arithmetic corresponding to TC0. We will show that the theory VTC0 extended with an axiom postulating the totality of iterated multiplication (which is computable in TC0) proves induction for quantifier-free formulas in the language \({\langle{+,\cdot,\le}\rangle}\) (IOpen), and more generally, minimization for \({\Sigma_{0}^{b}}\) formulas in the language of Buss’s S2.


Bounded arithmetic Open induction Threshold circuits Valued fields Real-closed fields 

Mathematics Subject Classification

03F20 03F30 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barrington D.A.M., Immerman N., Straubing H.: On uniformity within NC 1. J. Comput. Syst. Sci. 41(3), 274–306 (1990)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Basu S., Pollack R., Roy M.-F.: Algorithms in Real Algebraic Geometry. Springer, Berlin (2006)MATHGoogle Scholar
  3. 3.
    Beame P.W., Cook S.A., Hoover H.J.: Log depth circuits for division and related problems. SIAM J. Comput. 15(4), 994–1003 (1986)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Boughattas S., Kołodziejczyk L.A.: The strength of sharply bounded induction requires MSP. Ann. Pure Appl. Logic 161(4), 504–510 (2010)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Buss, S.R.: Bounded Arithmetic. Bibliopolis, Naples (1986). Revision of 1985 Princeton University Ph.D. thesisGoogle Scholar
  6. 6.
    Chandra A.K., Stockmeyer L., Vishkin U.: Constant depth reducibility. SIAM J. Comput. 13(2), 423–439 (1984)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Chiu A.Y., Davida G.I., Litow B.E.: Division in logspace-uniform NC 1. RAIRO Theor. Inform. Appl. 35(3), 259–275 (2001)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Cook S.A., Nguyen P.: Logical Foundations of Proof Complexity. Perspectives in Logic. Cambridge University Press, New York (2010)Google Scholar
  9. 9.
    Engler A.J., Prestel A.: Valued fields. Springer Monographs in Mathematics. Springer, Berlin (2005)Google Scholar
  10. 10.
    Hajnal A., Maass W., Pudlák P., Szegedy M., Turán G.: Threshold circuits of bounded depth. J. Comput. Syst. Sci. 46(2), 129–154 (1993)CrossRefMATHGoogle Scholar
  11. 11.
    Hesse W., Allender E., Barrington D.A.M.: Uniform constant-depth threshold circuits for division and iterated multiplication. J. Comput. Syst. Sci. 65(4), 695–716 (2002)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Immerman N.: Expressibility and parallel complexity. SIAM J. Comput. 18(3), 625–638 (1989)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Jeřábek E.: The strength of sharply bounded induction. Math. Logic Q. 52(6), 613–624 (2006)CrossRefMATHGoogle Scholar
  14. 14.
    Jeřábek E.: On theories of bounded arithmetic for NC 1. Ann. Pure Appl. Logic 162(4), 322–340 (2011)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Jeřábek E.: Root finding with threshold circuits. Theor. Comput. Sci. 462, 59–69 (2012)CrossRefMATHGoogle Scholar
  16. 16.
    Johannsen, J.: On the weakness of sharply bounded polynomial induction. In: Gottlob, G. Leitsch, A., Mundici, D. (eds.) Computational logic and proof theory. Proceedings of Kurt Gödel Colloquium ’93, Lecture Notes in Computer Science, vol. 713, pp. 223–230. Springer (1993)Google Scholar
  17. 17.
    Johannsen, J.: Weak bounded arithmetic, the Diffie–Hellman problem, and Constable’s class K. In: Proceedings of the 14th Annual IEEE Symposium on Logic in Computer Science, pp. 268–274 (1999)Google Scholar
  18. 18.
    Johannsen, J., Pollett, C.: On proofs about threshold circuits and counting hierarchies (extended abstract). In: Proceedings of the 13th Annual IEEE Symposium on Hogic in Computer Science, pp. 444–452 (1998)Google Scholar
  19. 19.
    Johannsen, J., Pollett, C.: On the \({\Delta^b_1}\)-bit-comprehension rule. In: Buss, S.R., Hájek, P., Pudlák, P. (eds.) Logic Colloquium ’98: Proceedings of the 1998 ASL European Summer Meeting held in Prague, Czech Republic, pp. 262–280. ASL (2000)Google Scholar
  20. 20.
    Kołodziejczyk L.A.: Independence results for variants of sharply bounded induction. Ann. Pure Appl. Logic 162(12), 981–990 (2011)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Krajíček, J.: Bounded Arithmetic, Propositional Logic, and Complexity Theory, Encyclopedia of Mathematics and Its Applications, vol. 60. Cambridge University Press, Cambridge (1995)Google Scholar
  22. 22.
    Maciel A., Thérien D.: Efficient threshold circuits for power series. Inf. Comput. 152(1), 62–73 (1999)CrossRefMATHGoogle Scholar
  23. 23.
    Mantzivis S.G.: Circuits in bounded arithmetic part I. Ann. Math. Artif. Intell. 6(1–3), 127–156 (1991)MathSciNetGoogle Scholar
  24. 24.
    Nguyen, P., Cook, S.A.: Theories for TC 0 and other small complexity classes. Log. Methods Comput. Sci. 2(1) (2006). Paper no. 3Google Scholar
  25. 25.
    Parberry I., Schnitger G.: Parallel computation with threshold functions. J. Comput. Syst. Sci. 36(3), 278–302 (1988)CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Reif J.H.: Logarithmic depth circuits for algebraic functions. SIAM J. Comput. 15(1), 231–242 (1986)CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    Reif J.H., Tate S.R.: On threshold circuits and polynomial computation. SIAM J. Comput. 21(5), 896–908 (1992)CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Scott, D.: On completing ordered fields. In: Luxemburg, W.A.J. (ed.) Applications of Model Theory to Algebra, Analysis, and Probability, pp. 274–278. Holt, Rinehart and Winston, New York (1969)Google Scholar
  29. 29.
    Shepherdson J.C.: A nonstandard model for a free variable fragment of number theory. Bull. Acad. Pol. Sci. Sér. Sci. Math. Astron. Phys. 12(2), 79–86 (1964)MATHMathSciNetGoogle Scholar
  30. 30.
    Takeuti, G.: Sharply bounded arithmetic and the function a ∸ 1. In: Sieg, W. (ed.) Hogic and Computation, Proceedings of a Workshop held at Carnegie Mellon University, 30 June–2 July 1987, Contemporary Mathematics, vol. 106, pp. 281–288. American Mathematical Society (1990)Google Scholar
  31. 31.
    Vámos P.: Decomposition problems for modules over valuation domains. J. Lond. Math. Soc. 2(1), 10–26 (1990)CrossRefGoogle Scholar
  32. 32.
    Wilkie, A.J.: Some results and problems on weak systems of arithmetic. In: Macintyre, A. (ed.) Logic Colloquium ’77, pp. 285–296. North-Holland (1978)Google Scholar
  33. 33.
    Zambella D.: Notes on polynomially bounded arithmetic. J. Symb. Logic 61(3), 942–966 (1996)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Institute of MathematicsAcademy of Sciences of the Czech RepublicPraha 1Czech Republic

Personalised recommendations