Archive for Mathematical Logic

, Volume 54, Issue 1–2, pp 193–230 | Cite as

Well-partial-orderings and the big Veblen number

  • Jeroen Van der Meeren
  • Michael Rathjen
  • Andreas Weiermann
Article

Abstract

In this article we characterize a countable ordinal known as the big Veblen number in terms of natural well-partially ordered tree-like structures. To this end, we consider generalized trees where the immediate subtrees are grouped in pairs with address-like objects. Motivated by natural ordering properties, extracted from the standard notations for the big Veblen number, we investigate different choices for embeddability relations on the generalized trees. We observe that for addresses using one finite sequence only, the embeddability coincides with the classical tree-embeddability, but in this article we are interested in more general situations (transfinite addresses and well-partially ordered addresses). We prove that the maximal order type of some of these new embeddability relations hit precisely the big Veblen ordinal \({\vartheta \Omega^{\Omega}}\). Somewhat surprisingly, changing a little bit the well-partially ordered addresses (going from multisets to finite sequences), the maximal order type hits an ordinal which exceeds the big Veblen number by far, namely \({\vartheta \Omega^{\Omega^\Omega}}\). Our results contribute to the research program (originally initiated by Diana Schmidt) on classifying properties of natural well-orderings in terms of order-theoretic properties of the functions generating the orderings.

Keywords

Well-partial-orderings Kruskal’s theorem Big Veblen number Ordinal notation systems Natural well-orderings Maximal order type Collapsing function Recursively defined trees Tree-embeddabilities 

Mathematics Subject Classification

03F15 03E10 06A06 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kruskal, J.B.: The theory of well-quasi-ordering: a frequently discovered concept. J. Combin. Theory Ser. A 13, 297–305 (1972)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Schmidt, D.: Well-Partial Orderings and Their Maximal Order Types. Habilitationsschrift, Heidelberg (1979)Google Scholar
  3. 3.
    Simpson, S.G.: Nonprovability of certain combinatorial properties of finite trees. In: Harvey Friedman’s research on the foundations of mathematics, Stud. Logic Found. Math., vol. 117, pp. 87–117. North-Holland, Amsterdam (1985)Google Scholar
  4. 4.
    Rathjen, M., Weiermann, A.: Proof-theoretic investigations on Kruskal’s theorem. Ann. Pure Appl. Logic 60(1), 49–88 (1993)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Schmidt, D.: Bounds for the closure ordinals of replete monotonic increasing functions. J. Symb. Logic 40(3), 305–316 (1975)CrossRefMATHGoogle Scholar
  6. 6.
    Weiermann, A.: An order-theoretic characterization of the Schütte–Veblen-hierarchy. Math. Logic Q. 39(3), 367–383 (1993)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Schütte, K.: Kennzeichnung von Ordnungszahlen durch rekursiv erklärte Funktionen. Math. Ann. 127, 15–32 (1954)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Veblen, O.: Continuous increasing functions of finite and transfinite ordinals. Trans. Am. Math. Soc. 9(3), 280–292 (1908)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Kříž, I.: Well-quasiordering finite trees with gap-condition. Proof of Harvey Friedman’s conjecture. Ann. Math. (2) 130(1), 215–226 (1989)CrossRefMATHGoogle Scholar
  10. 10.
    Gordeev, L.: Generalizations of the Kruskal–Friedman theorems. J. Symb. Logic 55(1), 157–181 (1990)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    de Jongh, D.H.J., Parikh, R.: Well-partial orderings and hierarchies. Nederl. Akad. Wetensch. Proc. Ser. A 80 = Indag. Math. 39(3), 195–207 (1977)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Aschenbrenner, M., Pong, W.Y.: Orderings of monomial ideals. Fund. Math. 181(1), 27–74 (2004)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Weiermann, A.: Proving termination for term rewriting systems. In: Computer Science Logic (Berne, 1991), Lecture Notes in Computer Science, vol. 626, pp. 419–428. Springer, Berlin (1992)Google Scholar
  14. 14.
    Weiermann, A.: A computation of the maximal order type of the term ordering on finite multisets. In: Mathematical Theory and Computational Practice, Lecture Notes in Computer Science, vol. 5635, pp. 488–498. Springer, Berlin (2009)Google Scholar
  15. 15.
    Buchholz, W., Schütte, K.: Proof Theory of Impredicative Subsystems of Analysis, Studies in Proof Theory. Monographs, vol. 2. Bibliopolis, Naples (1988)Google Scholar
  16. 16.
    Weiermann, A.: Complexity bounds for some finite forms of Kruskal’s theorem. J. Symb. Comput. 18(5), 463–488 (1994)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Jeroen Van der Meeren
    • 1
  • Michael Rathjen
    • 2
  • Andreas Weiermann
    • 1
  1. 1.Department of MathematicsGhent UniversityGentBelgium
  2. 2.Department of Pure MathematicsUniversity of LeedsLeedsUK

Personalised recommendations