Archive for Mathematical Logic

, Volume 54, Issue 1–2, pp 1–33 | Cite as

Partially definable forcing and bounded arithmetic

  • Albert AtseriasEmail author
  • Moritz Müller


We describe a method of forcing against weak theories of arithmetic and its applications in propositional proof complexity.


Bounded arithmetic Forcing Proof complexity 

Mathematics Subject Classification

03H15 03C25 03E40 03F20 03B70 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ajtai, M.: The complexity of the pigeonhole principle. In: Proceedings of the 29th Annual Symposion on the Foundations of Computer Science, pp. 346–355 (1988)Google Scholar
  2. 2.
    Atserias A., Dalmau V.: A combinatorial characterization of resolution width. J. Comput. Syst. Sci. 74(3), 323–334 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Avigad J.: Forcing in proof theory. Bull. Symb. Logic 10(3), 305–333 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Beame, P.: A switching lemma primer. Technical report UW-CSE-95-07-01, University of Washington (1994)Google Scholar
  5. 5.
    Beame, P., Pitassi, T.: Propositional proof complexity: past, present, and future. In: Paun G, Rozenberg G, Salomaa A (eds.) Current Trends in Theoretical Computer Science Entering the 21st Century. World Scientific Publishing, pp. 42–70 (2001)Google Scholar
  6. 6.
    Bellantoni S., Pitassi T., Urquhart A.: Approximation and small-depth Frege proofs. J. SIAM J. Comput. 21(6), 1161–1179 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Ben-Sasson E., Harsha P.: Lower bounds for bounded depth Frege proofs via Buss–Pudlák games. ACM Trans. Comput. Logic 11(3), 19:1–19:17 (2010)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Ben-Sasson E., Wigderson A.: Short proofs are narrow—resolution made simple. J. ACM 48(2), 149–169 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Buss S.: Polynomial size proofs of the propositional pigeonhole principle. J. Symb. Logic 52, 916–927 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Buss S.R. : Bounded arithmetic and propositional proof complexity. In: Schwichtenberg, H. (ed.), Logic of Computation, pp. 67–122. Springer, Berlin (1995)Google Scholar
  11. 11.
    Buss S.R.: Some remarks on the lengths of propositional proofs. Arch. Math. Logic 34, 377–394 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Buss, S.R.: First-order proof theory of arithmetic. In: Buss, S.R. (ed.), Handbook of Proof Theory, Chapter II. Studies in Logic and the Foundations of Mathematics, vol 137. Elsevier, Amsterdam, pp. 79–147 (1998)Google Scholar
  13. 13.
    Cook S.A., Nguyen P.: Logical Foundations of Proof Complexity. Cambridge University Press, Cambridge (2010)CrossRefzbMATHGoogle Scholar
  14. 14.
    Cook S.A., Reckhow A.R.: The relative efficiency of propositional proof systems. J. Symb. Logic 44(1), 36–50 (1979)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Dantchev, S., Riis, S.: On relativization and complexity gap for resolution-based proof systems. In: Baaz, M., Makowsky, A. (eds.), Proceedings of the 17th International Workshop Computer Science Logic, Lecture Notes in Computer Science, vol. 2803, pp. 142–154. Springer, Berlin (2003)Google Scholar
  16. 16.
    Durand A., Jones N.D., Makowsky J.A., More M.: Fifty years of the spectrum problem: survey and new results. Bull. Symb. Logic 18(4), 481–644 (2012)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Feferman S.: Some applications of forcing and generic sets. Fundam. Math. 56, 325–345 (1965)zbMATHMathSciNetGoogle Scholar
  18. 18.
    Fenner S., Fortnow L., Kurtz S.A., Li L.: An oracle builder’s toolkit. Inf. Comput. 182, 95–136 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Hirschfeld, J., Wheeler, W.H.: Forcing, Arithmetic, Division Rings, vol. 454. Lecture Notes in Mathematics (1975)Google Scholar
  20. 20.
    Hodges W.: Building Models by Games. Cambridge University Press, Cambridge (1985)zbMATHGoogle Scholar
  21. 21.
    Keisler, H.J.: Forcing and the omitting types theorem. In: Morley, M. (ed.) Studies in Model Theory, Studies in Mathematics, The Mathematical Association of America, vol. 8, pp. 96–133 (1973)Google Scholar
  22. 22.
    Knight J.F.: Generic expansions of structures. J. Symb. Logic 38(4), 561–570 (1973)CrossRefGoogle Scholar
  23. 23.
    Krajíček, J.: Bounded Arithmetic, Propositional Logic, and Complexity Theory. Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge (1995)Google Scholar
  24. 24.
    Krají J.: On Frege and extended Frege proof systems. In: Clote, P., Remmel, J. (eds.) Feasible Mathematics II, pp. 284–319. Birkhäuser, Boston (1995)CrossRefGoogle Scholar
  25. 25.
    Krajíček J.: Combinatorics of first order structures and porpositional proof systems. Arch. Math. Logic 43, 427–441 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Krajíček, J.: Forcing with random variables and proof complexity, vol. 382. London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge (2011)Google Scholar
  27. 27.
    Krají J., Pudlák P., Woods A.: An exponential lower bound to the size of bounded depth Frege proofs of the pigeonhole principle. Random Struct. Algorithms 7(1), 15–39 (1995)CrossRefzbMATHGoogle Scholar
  28. 28.
    Kunen, K.: Set Theory. Studies in Logic, vol. 34, revised edition. College Publications, London (2013)Google Scholar
  29. 29.
    Odifreddi P.: Forcing and reducibilities. J. Symb. Logic 48(2), 288–310 (1983)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Paris J., Wilkie A.J.: Counting problems in bounded arithmetic. Methods Math. Logic 1130, 317–340 (1985)CrossRefMathSciNetGoogle Scholar
  31. 31.
    Pitassi T., Beame P., Impagliazzo R.: Exponential lower bounds for the pigeonhole principle. Comput. Complex. 3, 97–108 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    Poizat, B.: Les petits cailloux. Une approche modèle-théorique de l’algorithmie, vol.~3. Nur al Matiq wal-Ma’rifah, Aléas, Lyon (1995)Google Scholar
  33. 33.
    Pudlák, P.: A bottom-up approach to foundations of mathematics. In: Proceedings Gödel’96, Logical Foundations of Mathematics, Computer Science and Physics—Kurt Gödel’s Legacy. Lecture Notes in Logic, vol. 6, pp. 81–97. Springer, Berlin (1996)Google Scholar
  34. 34.
    Pudlák, P.: The lengths of proofs. In: Buss. S.R. (ed.) Handbook of Proof Theory, Chapter VIII, pp. 547–637 (1998)Google Scholar
  35. 35.
    Pudlák P.: Proofs as games. Am. Math. Mon. 107(6), 541–550 (2000)CrossRefzbMATHGoogle Scholar
  36. 36.
    Razborov, A.A.: Lower bounds for propositional proofs and independence results in bounded arithmetic. In: Meyer auf der Heide, F., Monien, B. (eds.), Proceedings of the 23rd International Colloquium Automata, Languages and Programming. Lecture Notes in Computer Science. vol. 1099, pp. 48–62, Springer, Berlin (1996)Google Scholar
  37. 37.
    Razborov, A.A.: Proof complexity of pigeonhole principles. In: Proceedings of the 5th International Conference on Developments in Language Theory, pp. 100–116. Springer (2002)Google Scholar
  38. 38.
    Riis, S.: Finitisation in bounded arithmetic. BRICS Report Series RS-94-23 (1994)Google Scholar
  39. 39.
    Riis S.: A complexity gap for tree-resolution. Comput. Complex. 10, 179–209 (2001)CrossRefMathSciNetGoogle Scholar
  40. 40.
    Scott D.: A proof of the independence of the continuum hypothesis. Math. Syst. Theory 1(2), 89–111 (1967)CrossRefzbMATHGoogle Scholar
  41. 41.
    Segerlind N.: The complexity of propositional proofs. Bull. Symb. Logic 13(4), 417–481 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  42. 42.
    Segerlind N., Buss S., Impagliazzo R.: A switching lemma for small restrictions and lower bounds for k-DNF resolution. SIAM J. Comput. 33(5), 1171–1200 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  43. 43.
    Shoenfield, J.R.: Unramified forcing. In: Axiomatic Set Theory, Proceedings of Symposia in Pure mathematics, American Mathematical Society, vol. VIII, pp. 357–381 (1971)Google Scholar
  44. 44.
    Simpson S.G.: Forcing and models of arithmetic. Proc. Am. Math. Soc. 43(1), 193–194 (1974)CrossRefzbMATHGoogle Scholar
  45. 45.
    Stern J.: A new look at the interpolation theorem. J. Symb. Logic 40(1), 1–13 (1975)CrossRefzbMATHGoogle Scholar
  46. 46.
    Takeuti, G., Yasumoto, M.: Forcing on bounded arithmetic. In: Hájek, P. (ed.), Gödel’96. Lecture Notes in Logic, vol. 6, pp. 120–138 (1996)Google Scholar
  47. 47.
    Takeuti, G., Yasumoto, M.: Forcing on bounded arithmetic 2. The Journal of Symbolic Logic 63(3), (1998)Google Scholar
  48. 48.
    Thapen, N.: Notes on switching lemmas. Unpublished manuscript (2009)Google Scholar
  49. 49.
    Urquhart A.: The complexity of propositional proofs. Bull. Symb. Logic 1(4), 425–467 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  50. 50.
    Urquhart A., Fu X.: Simplified lower bounds for propositional proofs. Notre Dame J. Form. Logic 73(4), 523–544 (1996)MathSciNetGoogle Scholar
  51. 51.
    Zambella D.: Forcing in finite structures. Math. Logic Q. 43(3), 401–412 (1997)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Departament de Llenguatges i Sistemes Informàtics (LSI)Universitat Politècnica de Catalunya (UPC)BarcelonaSpain
  2. 2.Kurt Gödel Research Center (KGRC)Universität WienViennaAustria

Personalised recommendations