Advertisement

Archive for Mathematical Logic

, Volume 53, Issue 3–4, pp 463–485 | Cite as

Resurrection axioms and uplifting cardinals

  • Joel David Hamkins
  • Thomas A. Johnstone
Article

Abstract

We introduce the resurrection axioms, a new class of forcing axioms, and the uplifting cardinals, a new large cardinal notion, and prove that various instances of the resurrection axioms are equiconsistent over ZFC with the existence of an uplifting cardinal.

Keywords

Set theory Large cardinals Forcing axioms 

Mathematics Subject Classification

03E35 03E55 03E57 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abraham U., Shelah S.: Forcing closed unbounded sets. J. Symb. Logic 48(3), 643–657 (1983)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Bagaria J.: A characterization of Martin’s axiom in terms of absoluteness. J. Symb. Logic 62(2), 366–372 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Bagaria J.: Bounded forcing axioms as principles of generic absoluteness. Arch. Math. Logic 39(6), 393–401 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Bagaria, J., Hamkins, J.D., Tsaprounis, K., Usuba, T.: Superstrong and other large cardinals are never Laver indestructible, pp. 1–19 (under review)Google Scholar
  5. 5.
    Cody, B., Gitik, M., Hamkins, J.D., Schanker, J.: The least weakly compact cardinal can be unfoldable, weakly measurable and nearly θ-supercompact, pp. 1–24 (under review)Google Scholar
  6. 6.
    Dz̆amonja, M., Hamkins, J.D.: Diamond (on the regulars) can fail at any strongly unfoldable cardinal. Ann. Pure Appl. Logic, 144(1–3), 83–95, December (2006). Conference in honor of sixtieth birthday of James E. BaumgartnerGoogle Scholar
  7. 7.
    Goldstern M., Shelah S.: The bounded proper forcing axiom. J. Symb. Logic 60(1), 58–73 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Hamkins J.D.: The lottery preparation. Ann. Pure Appl. Logic 101(2–3), 103–146 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Hamkins J.D.: Unfoldable cardinals and the GCH. J. Symb. Logic 66(3), 1186–1198 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Hamkins, J.D.: A class of strong diamond principles. Preprint (2002)Google Scholar
  11. 11.
    Hamkins J.D.: A simple maximality principle. J. Symb. Logic 68(2), 527–550 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Hamkins, J.D., Johnstone, T.A.: Boldface resurrection and superstrong unfoldability, in preparationGoogle Scholar
  13. 13.
    Hamkins J.D., Johnstone T.A.: The proper and semi-proper forcing axioms for forcing notions that preserve ℵ2 or ℵ3. Proc. Am. Math. Soc. 137(5), 1823–1833 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Hamkins J.D., Johnstone T.A.: Indestructible strong unfoldability. Notre Dame J. Form. Logic 51(3), 291–321 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Hamkins J.D., Kirmayer G., Perlmutter N.L.: Generalizations of the Kunen inconsistency. Ann. Pure Appl. Logic 163(12), 1872–1890 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Johnstone, T.A.: Strongly unfoldable cardinals made indestructible. PhD thesis, The Graduate Center of the City University of New York, June (2007)Google Scholar
  17. 17.
    Koszmider P.: On coherent families of finite-to-one functions. J. Symb. Logic 58(1), 128–138 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Laver R.: Making the supercompactness of κ indestructible under κ-directed closed forcing. Israel J. Math. 29, 385–388 (1978)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Miyamoto, T.: A note on weak segments of PFA. In: Proceedings of the Sixth Asian Logic Conference (Beijing, 1996), pp. 175–197, River Edge, NJ, 1998. World Scientific, SingaporeGoogle Scholar
  20. 20.
    Neeman I., Schimmerling E.: Hierarchies of forcing axioms. I. J. Symb. Logic 73(1), 343–362 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Reitz, J.: The Ground Axiom. PhD thesis, The Graduate Center of the City University of New York, September (2006)Google Scholar
  22. 22.
    Schindler, R.: Bounded Martin’s maximum and strong cardinals. In: Set theory, Trends Math., pp. 401–406. Birkhäuser, Basel (2006)Google Scholar
  23. 23.
    Shelah S.: Proper Forcing, volume 940 of Lecture Notes in Mathematics. Springer, Berlin (1982)Google Scholar
  24. 24.
    Saharon S.: Semiproper forcing axiom implies Martin maximum but not PFA+. J. Symb. Logic 52(2), 360–367 (1987)CrossRefzbMATHGoogle Scholar
  25. 25.
    Stavi, J., Väänänen, J.: Reflection principles for the continuum. In: Logic and Algebra, Colume 302 of Contemp. Math., pp. 59–84. American Mathematical Society, Providence, RI (2002)Google Scholar
  26. 26.
    Villaveces A.: Chains of end elementary extensions of models of set theory. J. Symb. Logic 63(3), 1116–1136 (1998)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Mathematics, Philosophy, Computer ScienceThe Graduate Center of The City University of New YorkNew YorkUSA
  2. 2.Mathematics, College of Staten Island of CUNYStaten IslandUSA
  3. 3.Mathematics, New York City College of Technology of CUNYBrooklynUSA

Personalised recommendations