Archive for Mathematical Logic

, Volume 53, Issue 3–4, pp 367–384 | Cite as

Forcing Magidor iteration over a core model below \({0^{\P}}\)

Article

Abstract

We study the Magidor iteration of Prikry forcings, and the resulting normal measures on \({\kappa}\) , the first measurable cardinal in a generic extension. We show that when applying the iteration to a core model below \({0^{\P}}\) , then there exists a natural correspondence between the normal measures on \({\kappa}\) in the ground model, and those of the generic extension.

Keywords

Normal measures Magidor iteration Prikry forcing Core model 

Mathematics Subject Classification

03E45 03E55 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Apter, A., Cummings, J., Hamkins, J.: Large cardinals with few measures. In: Proceedings of the American Mathematical Society, vol. 135, no. 7 (2007)Google Scholar
  2. 2.
    Baldwin S.: The \({\lhd}\) -ordering on normal ultrafilters. J. Symb. Log. 50, 936–952 (1985)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Friedman S.-D., Magidor M.: The number of normal measures. J. Symb. Log. 74, 1069–1080 (2009)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Gitik, M.: Prikry type forcings. In: Foreman, M., Kanamori, A. (eds.) Handbook of Set Theory, vol. 2, pp. 1351–1448. Springer (2010)Google Scholar
  5. 5.
    Jeffrey, S.: Leaning Disassociated Indiscernibles. Ph.D. thesis, University of Florida (1999)Google Scholar
  6. 6.
    Kunen K.: Some application of iterated ultrapowers in set theory. Ann. Math. Log. 1, 179–227 (1970)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Kunen, K., Paris, J.B.: Boolean extensions and measurable cardinals. Ann. Math. Log. 2, 359–377 (1970/71)Google Scholar
  8. 8.
    Magidor M.: How large is the first strongly compact cardinal? or A study on identity crisis. Ann. Math. Log. 10, 33–57 (1976)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Prikry, K.: Changing measurable into accessible cardinals. Dissertations Math. (Rozprawy Mat.) 68 (1970)Google Scholar
  10. 10.
    Schlutzenberg, F.: Measures in Mice. Ph.D. dissertationGoogle Scholar
  11. 11.
    Zeman, M.: Inner Models and Large Cardinals. de Gruyter series in Mathematical Logic, vol. 5. Walter de Gruyter & Co (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Tel-Aviv UniversityTel-AvivIsrael

Personalised recommendations