Archive for Mathematical Logic

, Volume 52, Issue 5–6, pp 659–666 | Cite as

Program extraction for 2-random reals

  • Alexander P. KreuzerEmail author


Let \({2-\textsf{RAN}}\) be the statement that for each real X a real 2-random relative to X exists. We apply program extraction techniques we developed in Kreuzer and Kohlenbach (J. Symb. Log. 77(3):853–895, 2012. doi: 10.2178/jsl/1344862165), Kreuzer (Notre Dame J. Formal Log. 53(2):245–265, 2012. doi: 10.1215/00294527-1715716) to this principle. Let \({{\textsf{WKL}_0^\omega}}\) be the finite type extension of \({\textsf{WKL}_0}\). We obtain that one can extract primitive recursive realizers from proofs in \({{\textsf{WKL}_0^\omega} + \Pi^0_1-{\textsf{CP}} + 2-\textsf{RAN}}\), i.e., if \({{\textsf{WKL}_0^\omega} + \Pi^0_1-{\textsf{CP}} + 2-\textsf{RAN} \, {\vdash} \, \forall{f}\, {\exists}{x} A_{qf}(f,x)}\) then one can extract from the proof a primitive recursive term t(f) such that \({A_{qf}(f,t(f))}\). As a consequence, we obtain that \({{\textsf{WKL}_0}+ \Pi^0_1 - {\textsf{CP}} + 2-\textsf{RAN}}\) is \({\Pi^0_3}\) -conservative over \({\textsf{RCA}_0}\).


Weak weak König’s lemma 2-random Program extraction Conservation Proof mining 

Mathematics Subject Classification (2000)

03F35 03B30 03F10 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kreuzer A.P., Kohlenbach U.: Term extraction and Ramsey’s theorem for pairs. J. Symb. Log. 77(3), 853–895 (2012). doi: 10.2178/jsl/1344862165 MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Kreuzer A.P.: Primitive recursion and the chain antichain principle. Notre Dame J. Formal Log. 53(2), 245–265 (2012). doi: 10.1215/00294527-1715716 MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Yu X., Simpson S.G.: Measure theory and weak König’s lemma. Arch. Math. Log. 30(3), 171–180 (1990). doi: 10.1007/BF01621469 MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Avigad J., Dean E.T., Rute J.: Algorithmic randomness, reverse mathematics, and the dominated convergence theorem. Ann. Pure Appl. Log. 163(12), 1854–1864 (2012). doi: 10.1016/j.apal.2012.05.010 MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Conidis C.J., Slaman T.A.: Random reals, the rainbow Ramsey theorem, and arithmetic conservation. J. Symb. Log. 78(1), 195–206 (2013). doi: 10.2178/jsl.7801130 zbMATHCrossRefGoogle Scholar
  6. 6.
    Kohlenbach, U.: Higher order reverse mathematics. In: Reverse mathematics 2001, Lect. Notes Log., vol. 21, pp. 281–295. Assoc. Symbol. Log., La Jolla, CA (2005)Google Scholar
  7. 7.
    Simpson, S.G.: Subsystems of second order arithmetic, second edn. Perspectives in Logic. Cambridge University Press, Cambridge (2009). doi: 10.1017/CBO9780511581007
  8. 8.
    Chong C., Slaman T.A., Yang Y.: \({\Pi^0_1}\) –conservation of combinatorial principles weaker than Ramsey’s theorem for pairs. Adv. Math. 230(3), 1060–1077 (2012). doi: 10.1016/j.aim.2012.02.025 MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Troelstra, A.S. (ed.): Metamathematical investigation of intuitionistic arithmetic and analysis. Lecture Notes in Mathematics, vol. 344. Springer, Berlin (1973)Google Scholar
  10. 10.
    Kohlenbach U.: Elimination of Skolem functions for monotone formulas in analysis. Arch. Math. Log. 37, 363–390 (1998). doi: 10.1007/s001530050104 MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Kohlenbach, U.: Applied Proof Theory: Proof Interpretations and their Use in Mathematics. Springer Monographs in Mathematics. Springer Verlag (2008). doi: 10.1007/978-3-540-77533-1
  12. 12.
    Kautz, S.M.: Degrees of random sets. Ph.D. thesis, Cornell University (1991).
  13. 13.
    Downey, R.G., Hirschfeldt, D.R.: Algorithmic randomness and complexity. Theory and Applications of Computability. Springer, New York (2010). doi: 10.1007/978-0-387-68441-3

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.ENS Lyon, Université de Lyon, LIP (UMR 5668–CNRS–ENS Lyon–UCBL–INRIA)Lyon Cedex 07France

Personalised recommendations