Archive for Mathematical Logic

, Volume 52, Issue 5–6, pp 483–496 | Cite as

Aronszajn trees and the successors of a singular cardinal



From large cardinals we obtain the consistency of the existence of a singular cardinal κ of cofinality ω at which the Singular Cardinals Hypothesis fails, there is a bad scale at κ and κ++ has the tree property. In particular this model has no special κ+-trees.


Large cardinals Forcing Tree property Special tree Bad scale 

Mathematics Subject Classification (2000)

03E35 03E55 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abraham U.: Aronszajn trees on \({\aleph_2}\) and \({\aleph_3}\) . Ann. Pure Appl. Logic 24(3), 213–230 (1983)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Cummings J.: Notes on singular cardinal combinatorics. Notre Dame J. Form. Logic 46(3), 251–282 (2005)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Cummings J., Foreman M.: The tree property. Adv. Math. 133(1), 1–32 (1998)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Cummings J., Foreman M.: Diagonal Prikry extensions. J. Symb. Logic 75(4), 1382–1402 (2010)MathSciNetGoogle Scholar
  5. 5.
    Gitik M., Sharon A.: On SCH and the approachability property. Proc. Am. Math. Soc. 136(1), 311–320 (2008)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Jensen, R.B.: The fine structure of the constructible hierarchy. Ann. Math. Logic 4, 229–308 (erratum ibid. 4 (1972), 443 (1972). With a section by Jack Silver)Google Scholar
  7. 7.
    König D.: Sur les correspondence multivoques des ensembles. Fund. Math. 8, 114–134 (1926)MATHGoogle Scholar
  8. 8.
    Kunen K., Tall F.: Between martin’s axiom and souslin’s hypothesis. Fundm. Math. 102, 174–181 (1979)MathSciNetGoogle Scholar
  9. 9.
    Kurepa D.: Ensembles ordonnés et ramifiés. Publ. Math. Univ. Belgrade 4, 1–138 (1935)MathSciNetGoogle Scholar
  10. 10.
    Laver R.: Making the supercompactness of κ indestructible under κ-directed closed forcing. Isr. J. Math. 29(4), 385–388 (1978)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Magidor M., Shelah S.: The tree property at successors of singular cardinals. Arch. Math. Logic 35, 385–404 (1996)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Mathias, A.: Sequences generic in the sense of prikry. J. Aust. Math. Soc. 15 (1973)Google Scholar
  13. 13.
    Mitchell W.: Aronszajn trees and the independence of the transfer property. Ann. Math. Logic 5, 21–46 (1972/1973)CrossRefGoogle Scholar
  14. 14.
    Neeman I.: Aronszajn trees and failure of the singular cardinal hypothesis. J. Math. Logic 9(1), 139–157 (2009)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Sinapova, D.: The tree property and the failure of the singular cardinal hypothesis at \({\aleph_{\omega^2}}\) (preprint)Google Scholar
  16. 16.
    Sinapova, D.: The tree property at \({\aleph_{\omega+1}}\) (preprint)Google Scholar
  17. 17.
    Specker E.: Sur un problème de Sikorski. Colloquium Math. 2, 9–12 (1949)MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Mathematical SciencesCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations