Archive for Mathematical Logic

, Volume 52, Issue 3–4, pp 295–316 | Cite as

First-order Nilpotent minimum logics: first steps

  • Matteo Bianchi


Inspired by the work done by Baaz et al. (Ann Pure Appl Log 147(1–2): 23–47, 2007; Lecture Notes in Computer Science, vol 4790/2007, pp 77–91, 2007) for first-order Gödel logics, we investigate Nilpotent Minimum logic NM. We study decidability and reciprocal inclusion of various sets of first-order tautologies of some subalgebras of the standard Nilpotent Minimum algebra, establishing also a connection between the validity in an NM-chain of certain first-order formulas and its order type. Furthermore, we analyze axiomatizability, undecidability and the monadic fragments.


Many-valued logics Varieties of lattices Nilpotent Minimum logic Decidability 

Mathematics Subject Classification (2000)

03B50 03B25 03C07 03G10 03G25 06B20 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aguzzoli S., Busaniche M., Marra V.: Spectral duality for finitely generated Nilpotent Minimum algebras, with applications. J. Log. Comput. 17(4), 749–765 (2007)doi: 10.1093/logcom/exm021 MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Aguzzoli S., Gerla B.: Probability measures in the logic of Nilpotent Minimum. Stud. Log. 94, 151–176 (2010)doi: 10.1007/s11225-010-9228-8 MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Aguzzoli, S., Gerla, B., Manara, C.: Poset representation for Gödel and Nilpotent minimum logics. In: Godo, L. (ed.) Symbolic and Quantitative Approaches to Reasoning with Uncertainty, Lecture Notes in Computer Science, vol. 3571, pp. 469–469. Springer, Berlin (2005). doi: 10.1007/10.1007/11518655_56
  4. 4.
    Baaz, M., Ciabattoni, A., Fermüller, C.G.: Monadic fragments of Gödel logics: decidability and undecidability results. In: Dershowitz, N., Voronkov, A. (eds). Logic for Programming, Artificial Intelligence, and Reasoning—14th International Conference, LPAR 2007, Yerevan, Armenia, October 15–19, 2007. Proceedings, Lecture Notes in Computer Science, vol. 4790/2007, pp. 77–91. Springer, Berlin (2007). doi: 10.1007/978-3-540-75560-9
  5. 5.
    Baaz, M., Ciabattoni, A., Preining, N.: SAT in Monadic Gödel logics: a borderline between decidability and undecidability. In: Ono, H., Kanazawa, M., de Queiroz, R. (eds). Logic, Language, Information and Computation, Lecture Notes in Computer Science, vol. 5514, pp. 113–123. Springer, Berlin (2009). doi: 10.1007/978-3-642-02261-6_10
  6. 6.
    Baaz, M., Leitsch, A., Zach, R.: Incompleteness of a first-order Gödel logic and some temporal logics of programs. In: Büning, H.K. (ed). Computer Science Logic—9th International Workshop, CSL ’95 Annual Conference of the EACSL Paderborn, Germany, September 22–29, 1995 Selected Papers, Lecture Notes in Computer Science, vol. 1092/1996, pp. 1–15. Springer, Berlin (1996). doi: 10.1109/10.1007/3-540-61377-3_28
  7. 7.
    Baaz M., Preining N., Zach R.: First-order Gödel logics. Ann. Pure. Appl. Log. 147(1-2), 23–47 (2007) doi:  10.1016/j.apal.2007.03.001 MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Blok, W., Pigozzi, D.: Algebraizable logics, Memoirs of the American Mathematical Society, vol. 77. American Mathematical Society (1989) ISBN:0-8218-2459-7. Available on
  9. 9.
    Boixader, D., Esteva, F., Godo, L.: On the continuity of t-norms on bounded chains. In: Proceedings of the 8th IFSA World Congress IFSA’99, pp. 476–479. Taipei, Taiwan (1999)Google Scholar
  10. 10.
    Busaniche M.: Free Nilpotent Minimum algebras. Math. Log. Q. 52(3), 219–236 (2006) doi:  10.1002/malq.200510027 MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Busaniche M., Cignoli R.: Constructive logic with strong negation as a substructural logic. J. Log. Comput. 20(4), 761–793 (2010) doi: 10.1093/logcom/exn081 MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Cignoli R., Torrens P.: Free algebras in varieties of Glivenko MTL-algebras satisfying the equation 2(x 2) =  (2x)2. Stud. Log. 83(1-3), 157–181 (2006) doi:  10.1007/s11225-006-8302-8 MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Cintula P., Hájek P.: Triangular norm predicate fuzzy logics. Fuzzy Sets Syst. 161(3), 311–346 (2010) doi:  10.1016/j.fss.2009.09.006 zbMATHCrossRefGoogle Scholar
  14. 14.
    Dummett, M.: A propositional calculus with denumerable matrix. J. Symb. Log. 24(2), 97–106 (1959) Google Scholar
  15. 15.
    Dunn J.M., Meyer R.K.: Algebraic completeness results for Dummett’s LC and its extensions. Math. Log. Q. 17(1), 225–230 (1971) doi: 10.1002/malq.19710170126 MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    El-Zekey M., Lotfallah W., Morsi N.: Computational complexities of axiomatic extensions of monoidal t-norm based logic. Soft Comput. 13, 1089–1097 (2009) doi: 10.1007/s00500-008-0382-0 zbMATHCrossRefGoogle Scholar
  17. 17.
    Esteva F., Godo L.: Monoidal t-norm based logic: towards a logic for left-continuous t-norms. Fuzzy Sets Syst. 124(3), 271–288 (2001) doi: 10.1016/S0165-0114(01)00098-7 MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Esteva F., Godo L., Noguera C.: On rational weak Nilpotent minimum logics. J. Mult. Valued Log. Soft Comput. 12, 9–32 (2006)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Esteva, F., Godo, L., Noguera, C.: First-order t-norm based fuzzy logics with truth-constants: distinguished semantics and completeness properties. Ann. Pure Appl. Log. 161(2), 185–202 (2009). doi: 10.1016/j.apal.2009.05.014
  20. 20.
    Esteva F., Godo L., Noguera C.: Expanding the propositional logic of a t-norm with truth-constants: completeness results for rational semantics. Soft Comput. 14, 273–284 (2010) doi: 10.1007/s00500-009-0402-8 zbMATHCrossRefGoogle Scholar
  21. 21.
    Esteva F., Godo L., Noguera C.: On expansions of WNM t-norm based logics with truth-constants. Fuzzy Sets Syst. 161(3), 347–368 (2010) doi:  10.1016/j.fss.2009.09.002 MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Feferman, S., Jr., J.W.D., Goldfarb, W., Parsons, C., Sieg, W. (eds.): Kurt Gödel Collected Works, vol. 1 Publications: 1929–1936, paperback edn. Oxford University Press (2001) ISBN:9780195147209Google Scholar
  23. 23.
    Fodor, J.: Nilpotent minimum and related connectives for fuzzy logic. In: Fuzzy Systems, 1995. International Joint Conference of the Fourth IEEE International Conference on Fuzzy Systems and the Second International Fuzzy Engineering Symposium. Proceedings of 1995 IEEE International Conference on, pp. 2077–2082. IEEE (1995). doi: 10.1109/FUZZY.1995.409964
  24. 24.
    Gödel, K.: Zum intuitionistischen Aussagenkalkul. Anzeiger Akademie der Wissenschaften Wien 69, 65–66 (1932). Reprinted in [22]Google Scholar
  25. 25.
    Gispert, J.: Axiomatic extensions of the Nilpotent Minimum logic. Rep. Math. Logic 37, 113–123 (2003).
  26. 26.
    Hájek, P.: Metamathematics of Fuzzy Logic, Trends in Logic, vol. 4, paperback edn. Kluwer (2002) ISBN:9781402003707Google Scholar
  27. 27.
    Hájek, P.: Observations on the monoidal t-norm logic. Fuzzy Sets Syst. 132(1), 107–112 (2002). doi: 10.1016/S0165-0114(02)00057-X
  28. 28.
    Hájek P.: Non-arithmetical Gödel logic. Log. J. IGPL 13(4), 435–441 (2005) doi: 10.1093/jigpal/jzi033 MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Hájek P.: Arithmetical complexity of fuzzy predicate logics—a survey II. Ann. Pure Appl. Log. 161(2), 212–219 (2010) doi: 10.1016/j.apal.2009.05.015 CrossRefGoogle Scholar
  30. 30.
    Hájek P.: On witnessed models in fuzzy logic III—witnessed Gödel logics. Math. Log. Q. 56(2), 171–174 (2010) doi: 10.1002/malq.200810047 MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Jenei S.: On the structure of rotation-invariant semigroups. Arch. Math. Log. 42(5), 489–514 (2003) doi: 10.1007/s00153-002-0165-8 MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Klement, E., Mesiar, R., Pap, E.: Triangular Norms, Trends in Logic, vol. 8, Hardcover edn. Kluwer (2000) ISBN:978-0-7923-6416-0Google Scholar
  33. 33.
    Noguera, C.: Algebraic study of axiomatic extensions of triangular norm based fuzzy logics. Ph.D. thesis, IIIA-CSIC (2006). Available on
  34. 34.
    Preining, N.: Complete recursive axiomatizability of Gödel logics. Ph.D. thesis, Vienna University of Technology, Austria (2003). Available on
  35. 35.
    Preining, N.: Gödel logics—a survey. In: Fermüller, C., Voronkov, A. (eds.) Logic for Programming, Artificial Intelligence, and Reasoning, Lecture Notes in Computer Science, vol. 6397, pp. 30–51. Springer, Berlin (2010). doi: 10.1007/978-3-642-16242-8_4
  36. 36.
    Seebach, J.A., Steen, L.A.: Counterexamples in topology, reprint of 1978 edn. Dover Publications (1995). ISBN:048668735XGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Mathematics “Federigo Enriques”Università degli Studi di MilanoMilanoItaly

Personalised recommendations