Archive for Mathematical Logic

, Volume 51, Issue 7–8, pp 789–818 | Cite as

Lifschitz realizability for intuitionistic Zermelo–Fraenkel set theory

Article

Abstract

A variant of realizability for Heyting arithmetic which validates Church’s thesis with uniqueness condition, but not the general form of Church’s thesis, was introduced by Lifschitz (Proc Am Math Soc 73:101–106, 1979). A Lifschitz counterpart to Kleene’s realizability for functions (in Baire space) was developed by van Oosten (J Symb Log 55:805–821, 1990). In that paper he also extended Lifschitz’ realizability to second order arithmetic. The objective here is to extend it to full intuitionistic Zermelo–Fraenkel set theory, IZF. The machinery would also work for extensions of IZF with large set axioms. In addition to separating Church’s thesis with uniqueness condition from its general form in intuitionistic set theory, we also obtain several interesting corollaries. The interpretation repudiates a weak form of countable choice, ACω,ω, asserting that a countable family of inhabited sets of natural numbers has a choice function. ACω,ω is validated by ordinary Kleene realizability and is of course provable in ZF. On the other hand, a pivotal consequence of ACω,ω, namely that the sets of Cauchy reals and Dedekind reals are isomorphic, remains valid in this interpretation. Another interesting aspect of this realizability is that it validates the lesser limited principle of omniscience.

Keywords

Intuitionistic set theory Lifschitz realizability Church’s thesis Countable axiom of choice Lesser limited principle of omniscience 

Mathematics Subject Classification

03E25 03E35 03E70 03F25 03F35 03F50 03F55 03F60 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aczel P.: The type theoretic interpretation of constructive set theory. In: MacIntyre, A., Pacholski, L., Paris, J. (eds.) Logic Colloquium ’77, pp. 55–66. North Holland, Amsterdam (1978)CrossRefGoogle Scholar
  2. 2.
    Aczel, P., Rathjen, M.: Notes on constructive set theory. Technical Report 40, Institut Mittag-Leffler, The Royal Swedish Academy of Sciences (2001). http://www.ml.kva.se/preprints/archive2000-2001.php
  3. 3.
    Beeson M.: Continuity in intuitionistic set theories. In: Boffa, M., Dalen, D., McAloon, K. (eds.) Logic Colloquium ’78, North-Holland, Amsterdam (1979)Google Scholar
  4. 4.
    Akama, Y., Berardi, S., Hayashi, S., Kohlenbach, U.: An arithmetical hierarchy of the law of excluded middle and related principles. In: Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science (LICS’04), pp. 192–201. IEEE Press (2004)Google Scholar
  5. 5.
    Beeson M.: Foundations of Constructive Mathematics. Springer, Berlin (1980)Google Scholar
  6. 6.
    Blass A.: Injectivity, projectivity, and the axiom of choice. Trans. AMS 255, 31–59 (1979)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Chen, R.-M.: Independence and conservativity results for intuitionistic set theory. Ph.D. Thesis, University of Leeds (2010)Google Scholar
  8. 8.
    Dragalin A.G.: Mathematical Intuitionism-Introduction to Proof Theory. American Mathematical Society, Providence, RI (1988)MATHGoogle Scholar
  9. 9.
    Friedman H.: Some applications of Kleene’s method for intuitionistic systems. In: Mathias, A., Rogers, H. (eds.) Cambridge Summer School in Mathematical Logic volume 337 of Lectures Notes in Mathematics, pp. 113–170. Springer, Berlin (1973)CrossRefGoogle Scholar
  10. 10.
    Friedman H.: Set theoretic foundations for constructive analysis. Ann. Math. 105, 1–28 (1977)MATHCrossRefGoogle Scholar
  11. 11.
    Ishihara H.: An omniscience principle, the König lemma and the Hahn-Banch theorem. Zeitschrift für mathematische Logik und grundlagen der Mathematik 36, 237–240 (1990)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Kleene S.C.: On the interpretation of intuitionistic number theory. J. Symb. Log. 10, 109–124 (1945)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Kleene S.C., Vesley R.E.: The Foundations of Intuitionistic Mathematics. North-Holland, Amsterdam (1965)MATHGoogle Scholar
  14. 14.
    Kreisel G., Troelstra A.S.: Formal systems for some branches of intuitionistic analysis. Ann. Math. Log. 1, 229–387 (1970)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Lifschitz V.: CT0 is stronger than CT0!. Proc. Am. Math. Soc. 73, 101–106 (1979)MathSciNetGoogle Scholar
  16. 16.
    McCarty, D.C.: Realizability and recursive mathematics. PhD thesis, Oxford University (1984)Google Scholar
  17. 17.
    McCarty D.C.: Realizability and recursive set theory. Ann. Pure Appl. Log. 32, 153–183 (1986)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Myhill J.: Some properties of Intuitionistic Zermelo–Fraenkel set theory. In: Mathias, A., Rogers, H. (eds.) Cambridge Summer School in Mathematical Logic, volume 337 of Lectures Notes in Mathematics, pp. 206–231. Springer, Berlin (1973)CrossRefGoogle Scholar
  19. 19.
    Rathjen M.: The higher infinite in proof theory. In: Makowsky, J.A., Ravve, E.V. (eds.) Logic Colloquium ’95 Lecture Notes in Logic, vol. 11, pp. 275–304. Springer, New York (1998)Google Scholar
  20. 20.
    Rathjen M.: Realizability for constructive Zermelo–Fraenkel set theory. In: Väänänen, J., Stoltenberg-Hansen, V. (eds.) Logic Colloquium ’03. Lecture Notes in Logic, vol. 24, pp. 282–314. A.K. Peters, Wellesley, Massachusetts (2006)Google Scholar
  21. 21.
    Rathjen M.: The disjunction and other properties for constructive Zermelo–Fraenkel set theory. J. Symb. Log. 70, 1233–1254 (2005)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Rathjen M.: Metamathematical properties of intuitionistic set theories with choice principles. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds.) New Computational Paradigms: Changing Conceptions of What is Computable, pp. 287–312. Springer, New York (2008)Google Scholar
  23. 23.
    Troelstra A.S., van Dalen D.: Constructivism in Mathematics, vols. I, II. North Holland, Amsterdam (1988)Google Scholar
  24. 24.
    van Oosten J.: Lifschitz’s realizability. J. Symb. Log. 55, 805–821 (1990)MATHCrossRefGoogle Scholar
  25. 25.
    van Oosten, J.: Exercises in realizability. PhD thesis, University of Amsterdam (1991)Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.School of MathematicsUniversity of LeedsLeedsUK

Personalised recommendations