Archive for Mathematical Logic

, Volume 51, Issue 7–8, pp 687–693 | Cite as

Reclassifying the antithesis of Specker’s theorem

Article
  • 64 Downloads

Abstract

It is shown that a principle, which can be seen as a constructivised version of sequential compactness, is equivalent to a form of Brouwer’s fan theorem. The complexity of the latter depends on the geometry of the spaces involved in the former.

Keywords

Specker sequence Brouwer’s fan theorem Constructive reverse mathematics Constructive mathematics 

Mathematics Subject Classification

03F60 03F65 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berger, J.: The logical strength of the uniform continuity theorem. In: Beckmann, A., Berger, U., Löwe, B., Tucker, J.V. (ed.) Logical Approaches to Computational Barriers, number 3988 in Lecture Notes in Computer Sciences, pp. 35–39. Springer, Berlin (2006)Google Scholar
  2. 2.
    Berger, J.: A separation result for varieties of brouwer’s fan theorem. In: Proceedings of the 10th Asian Logic Conference (ALC 10), Kobe University in Kobe, Hyogo, Japan, September 1–6 (2008, to appear)Google Scholar
  3. 3.
    Berger J., Bridges D.: A fan-theoretic equivalent of the antithesis of Specker’s theorem. Indag. Math. (N.S.) 18(2), 195–202 (2007)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Berger J., Bridges D.: The anti-Specker property, a Heine-Borel property, and uniform continuity. Arch. Math. Logic 46(7–8), 583–592 (2008)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Bridges D.: Omniscience, sequential compactness, and the anti-specker property. Logic J. IGPL 19(1), 53–61 (2011)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Bridges D., Diener H.: The anti-specker property, positivity, and total boundedness. MLQ 56(4), 434–441 (2010)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Bridges D., Richman F.: Varieties of Constructive Mathematics. Cambridge University Press, Cambridge (1987)MATHCrossRefGoogle Scholar
  8. 8.
    Bridges D.S., Vîţă L.S.: Techniques of Constructive Analysis. Universitext. Springer, New York (2006)Google Scholar
  9. 9.
    Diener, H.: Compactness Under Constructive Scrutiny. PhD thesis, University of Canterbury, Christchurch, New Zealand (2008)Google Scholar
  10. 10.
    Ishihara, H.: Constructive reverse mathematics: compactness properties. In: From Sets and Types to Topology and Analysis, vol. 48 of Oxford Logic Guides, pp. 245–267. Oxford University Press, Oxford (2005)Google Scholar
  11. 11.
    Simpson S.: Subsystems of Second Order Arithmetic. Springer, Berlin (1999)MATHCrossRefGoogle Scholar
  12. 12.
    Specker E.: Nicht konstruktiv beweisbare Sätze der analysis. J. Symb. Logic 14, 145–158 (1949)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Troelstra A.S., van Dalen D.: Constructivism in Mathematics. Vol. I, volume 121 of Studies in Logic and the Foundations of Mathematics. North-Holland, Amsterdam (1988)Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Fakultät IV: MathematikUniversität SiegenSiegenGermany

Personalised recommendations