Archive for Mathematical Logic

, Volume 51, Issue 5–6, pp 535–551 | Cite as

Proving properties of matrices over \({\mathbb{Z}_{2}}\)

  • Michael Soltys


We prove assorted properties of matrices over \({\mathbb{Z}_{2}}\), and outline the complexity of the concepts required to prove these properties. The goal of this line of research is to establish the proof complexity of matrix algebra. It also presents a different approach to linear algebra: one that is formal, consisting in algebraic manipulations according to the axioms of a ring, rather than the traditional semantic approach via linear transformations.


Proof complexity matrix identities Frege and extended Frege 

Mathematical Subject Classification



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albert A.A.: Symmetric and alternating matrices in an arbitrary field, i. Trans. Am. Math. Soc. 43(3), 386–436 (1938)Google Scholar
  2. 2.
    Brualdi R.A., Ryser H.J.: Combinatorial Matrix Theory. Cambridge University Press, Cambridge (1991)zbMATHGoogle Scholar
  3. 3.
    Cook, S., Fontes, L.: Formal theories for linear algebra. In: Presented at the Federated Logic Conference (2010)Google Scholar
  4. 4.
    Cobb S.M.: On powers of matrices with elements in the field of integers modulo 2. Math. Gazette 42(342), 267–271 (1958)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Filmus, Y.: Range of symmetric matrices over GF(2). Unpublished note, University of Toronto, January (2010)Google Scholar
  6. 6.
    MacWilliams J.: Orthogonal matrices over finite fields. Am. Math. Mon. 76(2), 152–164 (1969)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Montgomery, P.L.: A block Lanczos algorithm for finding dependencies over GF(2). In: EUROCRYPT pp. 106–120 (1995)Google Scholar
  8. 8.
    Ryser H.J.: Matrices of zeros and ones. Bull. Am. Math. Soc. 66(6), 442–464 (1960)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Soltys M., Cook S.A.: The complexity of derivations of matrix identities. Ann. Pure Appl. Logic 130(1–3), 277–323 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Soltys M.: Extended frege and Gaussian elimination. Bull. Sect. Logic 31(4), 1–17 (2002)MathSciNetGoogle Scholar
  11. 11.
    Thapen N., Soltys M.: Weak theories of linear algebra. Arch. Math. Logic 44(2), 195–208 (2005)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.McMaster UniversityHamiltonCanada

Personalised recommendations