Archive for Mathematical Logic

, Volume 51, Issue 5–6, pp 517–534 | Cite as

Compactness notions for an apartness space

  • Douglas S. Bridges


Two new notions of compactness, each classically equivalent to the standard classical one of sequential compactness, for apartness spaces are examined within Bishop-style constructive mathematics.


Constructive Apartness Uniform Precompact 

Mathematical Subject Classification

03F60 54E05 54E15 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aczel, P., Rathjen, M.J.: Constructive Set Theory (forthcoming)Google Scholar
  2. 2.
    Beeson M.J.: Foundations of Constructive Mathematics. Springer, Heidelberg (1985)zbMATHGoogle Scholar
  3. 3.
    Bishop E.A.: Foundations of Constructive Analysis. McGraw-Hill, New York (1967)zbMATHGoogle Scholar
  4. 4.
    Bishop E.A., Bridges D.S.: Constructive Analysis. Springer, Heidelberg (1985) (Grundlehren der Math. Wissenschaften 279)zbMATHCrossRefGoogle Scholar
  5. 5.
    Bridges, D.S., Richman, F.: Varieties of Constructive Mathematics. London Mathematical Society. Lecture Notes, vol. 97. Cambridge University Press, Cambridge (1987)Google Scholar
  6. 6.
    Bridges D.S., Vîţă L.S.: Techniques of Constructive Analysis, Universitext. Springer, New York (2006)Google Scholar
  7. 7.
    Bridges, D.S., Vîţă, L.S.: Apartness and uniformity—a constructive development. In: CiE Series on Theory and Applications of Computability. Springer, Heidelberg (2011)Google Scholar
  8. 8.
    Diener H.: Generalising compactness. Math. Logic Q. 51(1), 49–57 (2008)MathSciNetGoogle Scholar
  9. 9.
    Dummett M.A.E.: Elements of Intuitionism. 2nd edn. Clarendon Press, Oxford (2000) (Oxford Logic Guides 39)zbMATHGoogle Scholar
  10. 10.
    Kushner, B.A.: Lectures on Constructive Mathematical Analysis. American Mathematical Society, Providence, RI (1985)Google Scholar
  11. 11.
    Martin-Löf P.: An intuitionistic theory of types. In: Sambin, G., Smith, J. (eds) Twenty-five Years of Constructive Type Theory, pp. 127–172. Clarendon Press, Oxford (1998) (Oxford Logic Guides 36)Google Scholar
  12. 12.
    Myhill J.: Constructive set theory. J. Symb. Logic 40(3), 347–382 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Naimpally, S.A., Warrack, B.D.: Proximity Spaces. Cambridge University Press, Cambridge (1970) (Cambridge Tracts in Math. and Math. Phys. 59)Google Scholar
  14. 14.
    Steinke, T.A.: Constructive Notions of Compactness in Apartness Spaces. M.Sc. thesis, University of Canterbury, Christchurch (2011)Google Scholar
  15. 15.
    Troelstra A.S., Dalen D.: Constructivism in Mathematics: An Introduction (Two Volumes). North Holland, Amsterdam (1988)Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsUniversity of CanterburyChristchurchNew Zealand

Personalised recommendations