Archive for Mathematical Logic

, Volume 51, Issue 1–2, pp 71–92 | Cite as

Proof analysis in intermediate logics

Article

Abstract

Using labelled formulae, a cut-free sequent calculus for intuitionistic propositional logic is presented, together with an easy cut-admissibility proof; both extend to cover, in a uniform fashion, all intermediate logics characterised by frames satisfying conditions expressible by one or more geometric implications. Each of these logics is embedded by the Gödel–McKinsey–Tarski translation into an extension of S4. Faithfulness of the embedding is proved in a simple and general way by constructive proof-theoretic methods, without appeal to semantics other than in the explanation of the rules.

Keywords

Sequent calculus Modal logic Intermediate logic Labelled deduction Modal companion 

Mathematics Subject Classification (2000)

03A99 03B20 03B45 03B55 03F03 03F05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D’Agostino M. et al.: Handbook of Tableaux Methods. Kluwer, Dordrecht (1998)Google Scholar
  2. 2.
    Avellone A. et al.: Duplication-free tableau calculi and related cut-free sequent calculi for the interpolable propositional intermediate logics. L. J. IGPL 7, 447–480 (1999)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Baaz M., Iemhoff R.: On Skolemization in constructive theories. J. Symb. Logic 73, 969–998 (2008)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Brünnler K., Guglielmi A. et al.: A first order system with finite choice of premises. In: Hendricks, V. F. (eds) First-Order Logic Revisited, pp. 59–74. Logos Verlag, London (2004)Google Scholar
  5. 5.
    Chagrov A., Zakharyaschev M.: Modal Logic. Oxford University Press, Oxford (1997)MATHGoogle Scholar
  6. 6.
    Ciabattoni, A., Galatos, N., Terui, K.: From axioms to analytic rules in nonclassical logics. In: Proceedings of the Logic in Computer Science, IEEE Computer Society, pp. 229–240 (2008)Google Scholar
  7. 7.
    Ciabattoni, A., Strassburger, L., Terui, K.: Expanding the realm of systematic proof theory. In: Grädel, E., Kahle, R. (eds.) Proceedings of the 18th EACSL Annual Conference on Computer Science Logic, LNCS 5771, pp. 163–178. Springer (2009)Google Scholar
  8. 8.
    Dummett M.A.E., Lemmon E.J.: Modal logics between S4 and S5. Zeitschrift für Mathematische Logik  und Grundlagen der Mathematik 5, 250–264 (1959)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Dyckhoff R.: A deterministic terminating sequent calculus for Gödel-Dummett logic. Logic J. IGPL 7, 319–326 (1999)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Dyckhoff R., Negri S.: Decision methods for linearly ordered Heyting algebras. Arch. Math. Logic 45, 411–422 (2006)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Dyckhoff, R., Negri, S.: A cut-free sequent system for Grzegorczyk logic, with an application to the provability interpretation of intuitionistic logic (in progress)Google Scholar
  12. 12.
    Ferrari M., Miglioli P.: Counting the maximal intermediate constructive logics. J. Symb. Logic 58, 1365–1401 (1993)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Fitch F.B.: Tree proofs in modal logic (abstract). J. Symb. Logic 31, 152 (1966)Google Scholar
  14. 14.
    Fitting M.: Proof Methods for Modal and Intuitionistic Logics. Synthese Library, vol. 169. Kluwer, Dordrecht (1998)Google Scholar
  15. 15.
    Gabbay D.: Labelled Deductive Systems. Oxford Logic Guides, vol. 33. Oxford University Press, Oxford (1996)Google Scholar
  16. 16.
    Gödel, K.: Eine Interpretation des intuitionistischen Aussagenkalküls. Ergebnisse eines mathematischen Kolloquiums, vol. 4, pp. 39–40, 1933. English tr. in Gödel’s Collected Works, vol. I, pp. 300–303 (1986)Google Scholar
  17. 17.
    Goré, R.: Tableau methods for modal and temporal logics. In: [1], pp. 297–396Google Scholar
  18. 18.
    Iemhoff R.: On the rules of intermediate logics. Arch. Math. Logic 45, 581–599 (2006)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Jankov V.A.: The calculus of the weak “law of excluded middle”. Math. USSR Izvestija 2, 997–1004 (1968)CrossRefMATHGoogle Scholar
  20. 20.
    Kanger S.: Provability in Logic. Almqvist & Wiksell, Stockholm (1957)Google Scholar
  21. 21.
    Ketonen O.: Untersuchungen zum Prädikatenkalkül. Annales Acad. Sci. Fenn, Ser. A.I. 23, 1–71 (1944)Google Scholar
  22. 22.
    Kracht, M.: Power and weakness of the modal display calculus. In: [45], pp. 95–122Google Scholar
  23. 23.
    Kripke, S.A.: Semantical analysis of intuitionistic logic. I. In: Formal Systems and Recursive Functions (Proc. Eighth Logic Colloq., Oxford, 1963), pp. 92–130 (1965)Google Scholar
  24. 24.
    Kripke S.A.: A completeness theorem in modal logic. J. Symb. Logic 24, 1–14 (1959)CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Maksimova L.: Interpolation properties of superintuitionistic logics. Studia Logica 38, 419–428 (1979)CrossRefMathSciNetGoogle Scholar
  26. 26.
    Maslov S.J.: An invertible sequential version of the constructive predicate calculus. Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 4, 96–111 (1967)MATHGoogle Scholar
  27. 27.
    McKinsey J.C., Tarski A.: Some theorems about the sentential calculi of Lewis and Heyting. J. Symb. Logic 13, 1–15 (1948)CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Mints, G.: A Short Introduction to Intuitionistic Logic. CSLI Lecture Notes, vol. 30. Stanford (1992)Google Scholar
  29. 29.
    Negri S.: Contraction-free sequent calculi for geometric theories with an application to Barr’s theorem. Arch. Math. Logic 42, 389–401 (2003)CrossRefMATHMathSciNetGoogle Scholar
  30. 30.
    Negri S.: Proof analysis in modal logic. J. Philos. Logic 34, 507–544 (2005)CrossRefMATHMathSciNetGoogle Scholar
  31. 31.
    Negri, S.: Proof analysis in non-classical logics. In: Dimitracopoulos, C., et al. (eds.) Logic Colloquium ’05, ASL Lecture Notes in Logic, vol. 28, pp. 107–128 (2008)Google Scholar
  32. 32.
    Negri S.: Kripke completeness revisited. In: Primiero, G., Rahman, S. (eds) Acts of Knowledge—History, Philosophy and Logic, pp. 247–282. College Publications, London (2009)Google Scholar
  33. 33.
    Negri S.: Proof theory for modal logic. Philosophy Compass 6, 523–538 (2011)CrossRefGoogle Scholar
  34. 34.
    Negri S., von Plato J.: Cut elimination in the presence of axioms. Bull. Symb. Logic 4, 418–435 (1998)CrossRefMATHGoogle Scholar
  35. 35.
    Negri S., von Plato J.: Structural Proof Theory. Cambridge University Press, Cambridge (2001)CrossRefMATHGoogle Scholar
  36. 36.
    Negri S., von Plato J.: Proof systems for lattice theory. Math. Struct. Comput. Sci. 14, 507–526 (2004)CrossRefMATHGoogle Scholar
  37. 37.
    Negri S., von Plato J., Coquand T.: Proof-theoretical analysis of order relations. Arch. Math. Logic 43, 297–309 (2004)CrossRefMATHMathSciNetGoogle Scholar
  38. 38.
    Negri S., von Plato J.: Proof Analysis. Cambridge University Press, Cambridge (2011)CrossRefGoogle Scholar
  39. 39.
    Olivetti, N., Pozzato, G.L., Schwind, C.: A sequent calculus and a theorem prover for standard conditional logics. ACM Trans. Comput. Log. 8(4) (2007). doi: 10.1145/1276920.1276924
  40. 40.
    Pinto, L., Uustalu, T.: Proof search and counter-model construction for bi-intuitionistic propositional logic with labelled sequents. In: Giese, M., Waaler, A. (eds.) Proceedings of Tableaux 2009, Lecture Notes in Artificial Intelligence 5607, pp. 295–309, Springer (2009)Google Scholar
  41. 41.
    Simpson, A.: Proof theory and semantics of intuitionistic modal logic. Ph.D. thesis, School of Informatics, University of Edinburgh (1994)Google Scholar
  42. 42.
    Troelstra, A., Schwichtenberg, H.: Basic Proof Theory, 2nd edn. Cambridge (2000)Google Scholar
  43. 43.
    Vigano L.: Labelled Non-classical Logics. Kluwer, Dordrecht (2000)MATHGoogle Scholar
  44. 44.
    Wallen L.: Automated Deduction in Non-classical Logic. MIT Press, Cambridge (1990)Google Scholar
  45. 45.
    Wansing, H. (eds): Proof Theory of Modal Logic. Kluwer, Dordrecht (1996)MATHGoogle Scholar
  46. 46.
    Wansing H.: Displaying Modal Logic. Kluwer, Dordrecht (1998)MATHGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.School of Computer ScienceSt. Andrews UniversitySt. AndrewsScotland
  2. 2.Department of PhilosophyUniversity of HelsinkiHelsinkiFinland

Personalised recommendations