Admissible closures of polynomial time computable arithmetic

Original Article


We propose two admissible closures \({\mathbb{A}({\sf PTCA})}\) and \({\mathbb{A}({\sf PHCA})}\) of Ferreira’s system PTCA of polynomial time computable arithmetic and of full bounded arithmetic (or polynomial hierarchy computable arithmetic) PHCA. The main results obtained are: (i) \({\mathbb{A}({\sf PTCA})}\) is conservative over PTCA with respect to \({\forall\exists\Sigma^b_1}\) sentences, and (ii) \({\mathbb{A}({\sf PHCA})}\) is conservative over full bounded arithmetic PHCA for \({\forall\exists\Sigma^b_{\infty}}\) sentences. This yields that (i) the \({\Sigma^b_1}\) definable functions of \({\mathbb{A}({\sf PTCA})}\) are the polytime functions, and (ii) the \({\Sigma^b_{\infty}}\) definable functions of \({\mathbb{A}({\sf PHCA})}\) are the functions in the polynomial time hierarchy.


Polynomial time computable arithmetic Kripke Platek set theory Second order arithmetic 


  1. 1.
    Buss S.R.: Bounded Arithmetic. Bibliopolis, Napoli (1986)MATHGoogle Scholar
  2. 2.
    Buss S.R.: A conservation result concerning bounded theories and the collection axiom. Proc. Am. Math. Soc. 100(4), 709–715 (1987)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Cantini A.: Asymmetric interpretation for bounded theories. Math. Logic Quart. 42, 270–288 (1996)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Cobham, A.: The intrinsic computational difficulty of functions. In: Logic, Methodology and Philosophy of Science II. pp. 24–30. North Holland, Amsterdam (1965)Google Scholar
  5. 5.
    Cook S.A., Nguyen P.: Logical Foundations of Proof Complexity. ASL Prespectives in Logic. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
  6. 6.
    Feferman S.: A language and axioms for explicit mathematics. In: Crossley, J. (ed.) In Algebra and Logic of Lecture Notes in Mathematics, vol. 450, pp. 87–139. Springer, Berlin (1975)Google Scholar
  7. 7.
    Feferman S.: Constructive theories of functions and classes. In: Boffa, M., Dalen, D., McAloon, K. (eds) In Logic Colloquium ’78, pp. 159–224. North Holland, Amsterdam (1979)Google Scholar
  8. 8.
    Ferreira, F.: Polynomial time computable arithmetic and conservative extensions. PhD thesis, Pennsylvania State University (1988)Google Scholar
  9. 9.
    Ferreira, F.: Polynomial time computable arithmetic. In: Sieg, W. (eds.) Logic and Computation, Proceedings of a Workshop held at Carnegie Mellon University, 1987, vol. 106 of Contemporary Mathematics. American Mathematical Society, Providence, Rhode Island, pp. 137–156 (1990)Google Scholar
  10. 10.
    Ferreira F.: Stockmeyer induction. In: Buss, S., Scott, P. (eds) In Feasible Mathematics, pp. 161–180. Birkhäuser, Basel (1990)Google Scholar
  11. 11.
    Ferreira F.: A note on a result of Buss concerning bounded theories and the collection scheme. Port. Math. 52(3), 331–336 (1995)MATHGoogle Scholar
  12. 12.
    Jäger, G.: Iterating admissibility in proof theory. In: Logic Colloquium ’81. Proceedings of the Herbrand Symposion. North Holland, Amsterdam (1982)Google Scholar
  13. 13.
    Jäger G.: Theories for Admissible Sets: A Unifying Approach to Proof Theory. Bibliopolis, Napoli (1986)MATHGoogle Scholar
  14. 14.
    Pohlers, W.: Subsystems of set theory and second order number theory. In: Buss, S.R. (eds.) In Handbook of Proof Theory, pp. 209–335, North Holland (1998)Google Scholar
  15. 15.
    Probst, D.: The provably terminating operations of the subsystem PETJ of explicit mathematics. Annal. Pure Appl. Logic (to appear)Google Scholar
  16. 16.
    Sato K.: The strength of extensionality II—weak weak set theories without infinity. Annal. Pure Appl. Logic 162, 579–646 (2011)CrossRefGoogle Scholar
  17. 17.
    Sazonov, V.: On bounded set theory. In: Maria Luisa Dalla Chiara et al. (ed.) Tenth International Congress of Logic, Methodology and Philosophy of Science, Florence, August 1995, vol. 1, pp. 85–103. Kluwer, September (1997)Google Scholar
  18. 18.
    Spescha, D.: Weak systems of explicit mathematics. PhD thesis, Universität Bern, (2009)Google Scholar
  19. 19.
    Spescha D., Strahm T.: Elementary explicit types and polynomial time operations. Math. Logic Quart. 55(3), 245–258 (2009)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Spescha, D., Strahm, T.: Realizability in weak systems of explicit mathematics. Math. Logic Quart. (to appear)Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Mathematisches InstitutLudwig-Maximilians-Universität MünchenMünchenGermany
  2. 2.Institut für Informatik und Angewandte MathematikUniversität BernBernSwitzerland

Personalised recommendations