Advertisement

Archive for Mathematical Logic

, Volume 50, Issue 3–4, pp 445–458 | Cite as

Exact bounds on epsilon processes

  • Toshiyasu AraiEmail author
Original Article
  • 39 Downloads

Abstract

In this paper we show that the lengths of the approximating processes in epsilon substitution method are calculable by ordinal recursions in an optimal way.

Keywords

Epsilon substitution Termination proof 

Mathematics Subject Classification (2000)

03F05 03F35 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arai T.: Epsilon substitution method for theories of jump hierachies. Arch. Math. Logic 41, 123–153 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Arai T.: Epsilon substitution method for \({ID_{1}(\Pi^{0}_{1}\lor\Sigma_{1}^{0})}\). Ann. Pure Appl. Logic 121, 163–208 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Arai, T.: An expository survey on epsilon substitution method. In: Proceedings of the Asian Mathematical Congress, Singapore (2005)Google Scholar
  4. 4.
    Arai T.: Epsilon substitution method for \({[\Pi^{0}_{1},\Pi^{0}_{1}]}\)-FIX. Arch. Math. Logic 44, 1009–1043 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Arai T.: Ideas in the epsilon substitution method for \({\Pi^{0}_{1}}\)-FIX. Ann. Pure Appl. Logic 136, 3–21 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Arai T.: Epsilon substitution method for \({\Pi^{0}_{2}}\)-FIX. J. Symb. Logic 71, 1155–1188 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Tait W.W.: Nested recursion. Math. Ann. 143, 236–250 (1961)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Tait W.W.: Functionals defined by transfinite recursion. J. Symb. Logic 30, 155–174 (1965)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Graduate School of EngineeringKobe UniversityKobeJapan
  2. 2.Graduate School of ScienceChiba UniversityChibaJapan

Personalised recommendations