Advertisement

Archive for Mathematical Logic

, Volume 50, Issue 3–4, pp 395–409 | Cite as

Nested PLS

  • Toshiyasu AraiEmail author
Original Article
  • 53 Downloads

Abstract

In this note we will introduce a class of search problems, called nested Polynomial Local Search (nPLS) problems, and show that definable NP search problems, i.e., \({\Sigma^{b}_{1}}\)-definable functions in \({T^{2}_{2}}\) are characterized in terms of the nested PLS.

Keywords

Search problems Bounded arithmetic Nested recursion 

Mathematics Subject Classification (2000)

03F30 03D15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arai, T.: Intuitionistic fixed point theories over Heyting arithmetic. In: Feferman, S., Sieg, W. (eds.) Proofs, Categories and Computations. Essays in honor of Grigori Mints. College Publications, King’s College London (to appear)Google Scholar
  2. 2.
    Beckmann A., Buss S.R.: Polynomial local search in the polynomial hierarchy and witnessing in fragments of bounded arithmetic. J. Math. Logic 9, 103–138 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Beckmann, A., Buss, S.R.: Characterising definable search problems in bounded arithmetic via proof notations (submitted)Google Scholar
  4. 4.
    Buss S.R.: Bounded Arithmetic. Bibliopolis, Napolis (1986)zbMATHGoogle Scholar
  5. 5.
    Buss, S.R.: Bounded arithmetic and constant depth Frege proofs. In: Krajíček, J. (ed.) Complexity of Computations and Proofs (Quaderni di matematica, vol. 13), pp. 153–174 (2004)Google Scholar
  6. 6.
    Buss S.R., Krajíček J.: An application of Boolean complexity to separation problems in bounded arithmetic. Proc. Lond. Math. Soc. 69, 1–21 (1994)CrossRefzbMATHGoogle Scholar
  7. 7.
    Johnson D.S., Papadimitriou C.H., Yannakakis M.: How easy is local search?. J. Comput. Syst. Sci. 37, 79–100 (1988)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Krajíček J., Skelly A., Thapen N.: NP search problems in low fragments of bounded arithmetic. J. Symb. Logic 72, 649–672 (2007)CrossRefzbMATHGoogle Scholar
  9. 9.
    Megiddo N., Papadimitriou C.H.: A note on total functions, existence theorems, and computational complexity. Theor. Comp. Sci. 81, 317–324 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Papadimitriou C.H.: On the complexity of the parity argument and other inefficient proofs of existence. J. Comp. Syst. Sci. 48, 498–532 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Skelly, A., Thapen, N.: The provable total search problems of bounded arithmetic, Typeset manuscript (2007)Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Graduate School of ScienceChiba UniversityChibaJapan

Personalised recommendations