Archive for Mathematical Logic

, Volume 50, Issue 1–2, pp 245–255 | Cite as

A note on propositional proof complexity of some Ramsey-type statements

  • Jan KrajíčekEmail author
Original Paper


A Ramsey statement denoted \({n \longrightarrow (k)^2_2}\) says that every undirected graph on n vertices contains either a clique or an independent set of size k. Any such valid statement can be encoded into a valid DNF formula RAM(n, k) of size O(n k ) and with terms of size \({\left(\begin{smallmatrix}k\\2\end{smallmatrix}\right)}\) . Let r k be the minimal n for which the statement holds. We prove that RAM(r k , k) requires exponential size constant depth Frege systems, answering a problem of Krishnamurthy and Moll [15]. As a consequence of Pudlák’s work in bounded arithmetic [19] it is known that there are quasi-polynomial size constant depth Frege proofs of RAM(4 k , k), but the proof complexity of these formulas in resolution R or in its extension R(log) is unknown. We define two relativizations of the Ramsey statement that still have quasi-polynomial size constant depth Frege proofs but for which we establish exponential lower bound for R.


Proof complexity Ramsey theorem Resolution 

Mathematics Subject Classification (2000)

03F20 68Q15 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aehlig, K., Beckmann, A.: A remark on the induction needed to prove the Ramsey principle, unpublished manuscript (2006)Google Scholar
  2. 2.
    Ajtai, M.: The complexity of the pigeonhole principle. In: Proceedings IEEE 29th Annual Symp. on Foundation of Computer Science, pp. 346–355 (1988)Google Scholar
  3. 3.
    Beame P., Cook S.A., Edmonds J., Impagliazzo R., Pitassi T.: The relative complexity of NP search problems. J. Comput. Syst. Sci. 57, 3–19 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Chiari M., Krajíček J.: Lifting independence results in bounded arithmetic. Arch. Math. Log. 38(2), 123–138 (1999)zbMATHCrossRefGoogle Scholar
  5. 5.
    Dantchev, S., Riis, S.: On Complexity gaps for Resolution-based proof systems, In: 12th Annual Conf. of the EACSL, Computer Sci Logic, LNCS 2903, pp. 142–154. Springer (2003)Google Scholar
  6. 6.
    Erdös P.: Some remarks on the theory of graphs. Bull. AMS 53, 292–294 (1947)zbMATHCrossRefGoogle Scholar
  7. 7.
    Hanika, J.: Search Problems and Bounded Arithmetic, PhD Thesis, Charles University, Prague (2004)Google Scholar
  8. 8.
    Hanika J.: Herbrandizing search problems in Bounded Arithmetic. Math. Log. Q. 50(6), 577–586 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Krajíček J.: Lower bounds to the size of constant-depth propositional proofs. J. Symbolic Log. 59(1), 73–86 (1994)zbMATHCrossRefGoogle Scholar
  10. 10.
    Krajíček, J.: Bounded arithmetic, propositional logic, and complexity theory, Encyclopedia of Mathematics and its applications, Vol. 60, Cambridge University Press (1995)Google Scholar
  11. 11.
    Krajíček J.: On the weak pigeonhole principle. Fundamenta Mathematicae 170(1–3), 123–140 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Krajíček J.: Combinatorics of first order structures and propositional proof systems. Arch. Math. Log 43(4), 427–441 (2004)zbMATHCrossRefGoogle Scholar
  13. 13.
    Krajíček J., Pudlák P., Woods A.: An exponential lower bound to the size of bounded depth frege proofs of the Pigeonhole principle. Random Struct. Algorithms 7(1), 15–39 (1995)zbMATHCrossRefGoogle Scholar
  14. 14.
    Krajíček J., Skelley A., Thapen N.: NP search problems in low fragments of bounded arithmetic. J. Symbolic Log. 72(2), 649–672 (2007)zbMATHCrossRefGoogle Scholar
  15. 15.
    Krishnamurthy, B., Moll, R.N.: Examples of hard tautologies in the propositional calculus. In: 13th ACM Symposium on Th. of Computing, pp. 28–37 (1981)Google Scholar
  16. 16.
    Maciel A., Pitassi T., Woods A.: A new proof of the weak pigeonhole principle. J. Comput. Syst. Sci. Arch. 64(4), 843–872 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Paris J., Harrington L. : A mathematical incompleteness in Peano arithmetic. In: Barwise, J. (eds) Handbook for Mathematical Logic, North-Holland, Amsterdam, Netherlands (1977)Google Scholar
  18. 18.
    Pitassi T., Beame P., Impagliazzo R.: Exponential lower bounds for the pigeonhole principle. Comput. complex. 3, 97–308 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Pudlák, P.: Ramsey’s Theorem in bounded arithmetic. In: Proc. Computer Science Logic’90, (eds.). E. Borger, LNCS 553, pp.308–317. Springer-Verlag (1991)Google Scholar
  20. 20.
    Skelley, A., Thapen, N.: The provably total search problems of bounded arithmetic, submitted (preprint 2008)Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Faculty of Mathematics and PhysicsCharles UniversityPrague 8The Czech Republic

Personalised recommendations