Archive for Mathematical Logic

, Volume 50, Issue 1–2, pp 197–213 | Cite as

Intermediate Logics and the de Jongh property

  • Dick de Jongh
  • Rineke Verbrugge
  • Albert Visser
Open Access
Original Article


We prove that all extensions of Heyting Arithmetic with a logic that has the finite frame property possess the de Jongh property.


Intuitionistic logic Heyting’s arithmetic 

Mathematics Subject Classification (2000)

03F25 03F30 03-02 03B20 03F50 03F40 


Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.


  1. 1.
    Blackburn P., de Rijke M., Venema Y.: Modal Logic, Volume 53 of Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, Cambridge, MA (2002)Google Scholar
  2. 2.
    Buss S.: Intuitionistic validity in T-normal Kripke structures. Ann. Pure Appl. Log. 59, 159–173 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Ciardelli, I.A.: Inquisitive semantics and intermediate logics. Technical report, ILLC, University of Amsterdam, Amsterdam (2009)Google Scholar
  4. 4.
    Chagrov A., Zakharyashev M.: Modal Logic. Oxford Logic Guides. Oxford University Press, Oxford (1997)Google Scholar
  5. 5.
    de Jongh D.H.J., Gabbay D.: A sequence of decidable finitely axiomatizable intermediate logics with the disjunction property. J. Symbolic Log. 39, 67–78 (1974)zbMATHCrossRefGoogle Scholar
  6. 6.
    de Jongh D.H.J., Visser A.: Embeddings of heyting algebras. In: Hodges, W., Hyland, M., Steinhorn, C., Truss, J. (eds) Logic at Work, Studies in Fuzziness and Soft Computing, pp. 187–213. Clarendon Press, Oxford (1996)Google Scholar
  7. 7.
    de Jongh D.H.J.: The maximality of the intuitionistic predicate calculus with respect to Heyting’s Arithmetic. J. Symbolic Log. 36, 606 (1970)Google Scholar
  8. 8.
    de Jongh D.H.J., Smoryński C.: Kripke models and the intuitionistic theory of species. Ann. Math. Log. 9, 157–186 (1976)zbMATHCrossRefGoogle Scholar
  9. 9.
    Friedman H.: Some applications of Kleene’s methods for intuitionistic systems. In: Mathias, A.R.D., Rogers, H. (eds) Cambridge Summer School in Mathematical Logic, pp. 113–170. Springer Verlag, Berlin, Heidelberg, New York (1973)CrossRefGoogle Scholar
  10. 10.
    Friedman H.: Classically and intuitionistically provably recursive functions. In: Müller, G.H., Scott, D.S. (eds) Higher Set Theory, pp. 21–27. Springer Verlag, Berlin, Heidelberg, New York (1978)CrossRefGoogle Scholar
  11. 11.
    Gavrilenko Yu.V.: Recursive realizability from the inuitionistic point of view. Sov. Math. Dokl. 23, 9–14 (1981)zbMATHGoogle Scholar
  12. 12.
    Hájek P., Pudlák P.: Metamathematics of First-Order Arithmetic. Perspectives in Mathematical Logic. Springer, Berlin (1991)Google Scholar
  13. 13.
    Kleene S.C.: Recursive predicates and quantifiers. Trans. AMS 53, 41–73 (1943)zbMATHMathSciNetGoogle Scholar
  14. 14.
    Kleene S.C.: Disjunction and existence under implication in elementary intuitionistic formalisms. J. Symbolic Log. 27, 11–18 (1962)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Kreisel G., Putnam H.: Eine Unableitbarkeitsbeweismethode für den Intuitionistischen Aussagenkalkül. Zeitschrift für Mathematische Logik and Grundlagen der Mathematik 3, 74–78 (1957)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Leivant, D.: Absoluteness in Intuitionistic Logic, volume 73. Mathematical Centre Tract, Amsterdam, 1979. The Thesis was originally published in 1975Google Scholar
  17. 17.
    Levin V.A.: Some syntactic theorems on the calculus of finite problems of Yu.T. Medvedev. Sov. Math. Dokl. 10, 288–290 (1969)zbMATHGoogle Scholar
  18. 18.
    Maksimova L., Shehtman V., Skvortsov D.: The impossibility of a finite axiomatization of Medvedev’s logic of finitary problems. Sov. Math. Dokl. 20, 394–398 (1979)zbMATHGoogle Scholar
  19. 19.
    McCarty D.C.: Incompleteness in intuitionistic metamathematics. Notre Dame J. Formal Log. 32, 323–358 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Medvedev Yu.: Interpretation of logical formulas by means of finite problems. Sov. Math. Dokl. 7, 180–183 (1966)Google Scholar
  21. 21.
    Montagna F.: On the diagonalizable algebra of Peano Arithmetic. Boll. Unione Matematica Italiana 16-B, 795–813 (1979)MathSciNetGoogle Scholar
  22. 22.
    Plisko V.E.: A survey of propositional realizability logic. Bull. Symbolic Log. 15, 1–42 (2009)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Rose G.F.: Propositional calculus and realizability. Tran. Am. Math. Soc. 75, 1–19 (1953)zbMATHGoogle Scholar
  24. 24.
    Solovay R.M.: Provability interpretations of modal logic. Israel J. Math. 25, 287–304 (1976)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Smoryński C.: Applications of Kripke models. In: Troelstras A.S. (eds) Metamathematical Investigations of Intuitionistic Arithmetic and Analysis, Springer Lecture Notes 344, pp. 324–391. Springer, Berlin (1973)CrossRefGoogle Scholar
  26. 26.
    Tarski A., Mostowski A., Robinson R.M.: Undecidable Theories. North–Holland, Amsterdam (1953)zbMATHGoogle Scholar
  27. 27.
    Troelstra, A.S. (ed.): Metamathematical Investigations of Intuitionistic Arithmetic and Analysis. Springer Lecture Notes 344. Springer, Berlin (1973)Google Scholar
  28. 28.
    Troelstra, A.S., van Dalen, D.: Constructivism in Mathematics, vol. 2. Studies in Logic and the Foundations of Mathematics, vol. 123. North Holland, Amsterdam (1988)Google Scholar
  29. 29.
    van Oosten, J.: Exercises in Realizability. Ph. D. Thesis. Department of Mathematics and Computer Science, University of Amsterdam, Amsterdam (1991)Google Scholar
  30. 30.
    van Oosten J.: A semantical proof of de Jongh’s theorem. Arch. Math. Log. 31, 105–114 (1991)zbMATHCrossRefGoogle Scholar
  31. 31.
    Visser, A.: Aspects of Diagonalization and Provability. Ph.D. Thesis, Department of Philosophy, Utrecht University (1981)Google Scholar
  32. 32.
    Visser A.: On the completeness principle. Ann. Mathe. Log. 22, 263–295 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Visser, A.: Evaluation, provably deductive equivalence in Heyting’s Arithmetic of substitution instances of propositional formulas. Logic Group Preprint Series 4, Department of Philosophy, Utrecht University, Heidelberglaan 8, 3584 CS Utrecht, (1985)Google Scholar
  34. 34.
    Visser A.: Interpretations over Heyting’s Arithmetic. In: Orłowska, E. (eds) Logic at Work, Studies in Fuzziness and Soft Computing, pp. 255–284. Physica-Verlag, Heidelberg/New York (1998)Google Scholar
  35. 35.
    Visser A.: Rules and arithmetics. Notre Dame J. Formal Log. 40(1), 116–140 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Visser A.: Substitutions of \({{\Sigma}^0_1}\)-sentences: explorations between intuitionistic propositional logic and intuitionistic arithmetic. Ann. Pure Appl. Log. 114, 227–271 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Visser, A.: Can we make the Second Incompleteness Theorem coordinate free? J. Log. Comput. (2009). doi: 10.1093/logcom/exp048
  38. 38.
    Yang, F.: Intuitionistic subframe formulas, NNIL-formulas and n-universal models. Technical report, ILLC, University of Amsterdam, Amsterdam (2008)Google Scholar

Copyright information

© The Author(s) 2010

Authors and Affiliations

  • Dick de Jongh
    • 1
  • Rineke Verbrugge
    • 2
  • Albert Visser
    • 3
  1. 1.ILLC, University of AmsterdamAmsterdamThe Netherlands
  2. 2.Artificial IntelligenceUniversity of GroningenGroningenThe Netherlands
  3. 3.Department of PhilosophyUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations