Archive for Mathematical Logic

, Volume 49, Issue 6, pp 693–723 | Cite as

Saturated models in institutions



Saturated models constitute one of the powerful methods of conventional model theory, with many applications. Here we develop a categorical abstract model theoretic approach to saturated models within the theory of institutions. The most important consequence is that the method of saturated models becomes thus available to a multitude of logical systems from logic or from computing science. In this paper we define the concept of saturated model at an abstract institution-independent level and develop the fundamental existence and uniqueness theorems. As an application we prove a general institution-independent version of the Keisler–Shelah isomorphism theorem “any two elementarily equivalent models have isomorphic ultrapowers” (assuming Generalized Continuum Hypothesis).


Saturated models Institutions Institution-independent model theory 

Mathematics Subject Classification (2000)

03C50 03C95 18C50 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adamek J., Rosický J.: Locally Presentable and Accessible Categories, Volume 189 of London Mathematical Society Lecture Notes. Cambridge University Press, Cambridge (1994)Google Scholar
  2. 2.
    Andréka H., Németi I.: Łoś lemma holds in every category. Stud. Sci. Math. Hung. 13, 361–376 (1978)MATHGoogle Scholar
  3. 3.
    Astesiano E., Bidoit M., Kirchner H., Krieg-Brückner B., Mosses P., Sannella D., Tarlecki A.: CASL: the common algebraic specification language. Theor. Comput. Sci. 286(2), 153–196 (2002)MATHCrossRefGoogle Scholar
  4. 4.
    Bidoit, M., Hennicker, R.: On the integration of the observability and reachability concepts. In: Proceedings of the 5th International Conference on Foundations of Software Science and Computation Structures (FOSSACS’2002), Lecture Notes in Computer Science, vol. 2303, pp. 21–36 (2002)Google Scholar
  5. 5.
    Borzyszkowski, T.: Higher-order logic and theorem proving for structured specifications. In: Choppy, C., Bert, D., Mosses, P. (eds.) Workshop on Algebraic Development Techniques 1999, LNCS, vol. 1827, pp. 401–418 (2000)Google Scholar
  6. 6.
    Chang C.-C., Keisler H.J.: Model Theory. North Holland, Amsterdam (1990)MATHGoogle Scholar
  7. 7.
    Cîrstea C.: An institution of modal logics for coalgebras. Log. Algebraic Program. 67(1–1), 87–113 (2006)MATHCrossRefGoogle Scholar
  8. 8.
    Codescu, M., Găină, D.: Preservation by saturation in institutions. Private communicationGoogle Scholar
  9. 9.
    Codescu M., Găină D.: Birkhoff completeness in institutions. Log. Univ. 2(2), 277–309 (2008)MATHCrossRefGoogle Scholar
  10. 10.
    Diaconescu, R.: Extra theory morphisms for institutions: logical semantics for multi-paradigm languages. Applied Categorical Structures 6(4):427–453, 1998. A preliminary version appeared as JAIST Technical Report IS-RR-97-0032F in (1997)Google Scholar
  11. 11.
    Diaconescu R.: Institution-independent ultraproducts. Fund. Inform. 55(3–4), 321–348 (2003)MATHMathSciNetGoogle Scholar
  12. 12.
    Diaconescu R.: Elementary diagrams in institutions. J. Log. Comput. 14(5), 651–674 (2004)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Diaconescu R.: An institution-independent proof of Craig interpolation theorem. Stud. Log. 77(1), 59–79 (2004)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Diaconescu, R.: Jewels of institution-independent model theory. In: Futatsugi, K., Meseguer, J., Jouannaud, J.-P. (eds.) Algebra, Meaning and Computation (a festschrift in honour of Professor Joseph Goguen), LNCS, vol. 4060, pp. 65–98. Springer-Verlag Berlin Heidelberg (2006)Google Scholar
  15. 15.
    Diaconescu R.: Proof systems for institutional logic. J. Log. Comput. 16(3), 339–357 (2006)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Diaconescu R.: A categorical study on the finiteness of specifications. Inf. Process. Lett. 108(2), 75–80 (2008)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Diaconescu, R.: Institution-independent Model Theory. Birkhäuser (2008)Google Scholar
  18. 18.
    Diaconescu R., Futatsugi K.: CafeOBJ Report: The Language, Proof Techniques, and Methodologies for Object-Oriented Algebraic Specification, AMAST Series in Computing, vol. 6. World Scientific, Singapore (1998)Google Scholar
  19. 19.
    Diaconescu, R., Goguen, J., Stefaneas, P.: Logical support for modularisation. In: Huet, G., Plotkin, G. (eds.) Logical Environments, pp. 83–130. Cambridge, 1993. Proceedings of a Workshop held in Edinburgh, Scotland, May (1991)Google Scholar
  20. 20.
    Fiadeiro J.L., Costa J.F.: Mirror, mirror in my hand: a duality between specifications and models of process behaviour. Math. Struct. Comput. Sci. 6(4), 353–373 (1996)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Goguen J., Burstall R.: Institutions: abstract model theory for specification and programming. J. Assoc. Comput. Mach. 39(1), 95–146 (1992)MATHMathSciNetGoogle Scholar
  22. 22.
    Goguen, J., Diaconescu, R.: Towards an algebraic semantics for the object paradigm. In: Ehrig, H., Orejas, F. (eds.) Recent Trends in Data Type Specification, Lecture Notes in Computer Science, vol. 785, pp. 1–34. Springer (1994)Google Scholar
  23. 23.
    Grätzer G.: Universal Algebra. Springer, New York (1979)MATHGoogle Scholar
  24. 24.
    Găină, D., Petria, M.: Completeness by forcing. J. Log. Comput. (To appear)Google Scholar
  25. 25.
    Găină D., Popescu A.: An institution-independent generalization of Tarski’s elementary chain theorem. J. Log. Comput. 16(6), 713–735 (2006)MATHCrossRefGoogle Scholar
  26. 26.
    Găină D., Popescu A.: An institution-independent proof of Robinson consistency theorem. Stud. Log. 85(1), 41–73 (2007)MATHCrossRefGoogle Scholar
  27. 27.
    Holz M., Steffens K., Weitz E.: Introduction to Cardinal Arithmetic. Birkhäuser, Boston (1999)MATHGoogle Scholar
  28. 28.
    Joachim L., Scott P.: Introduction to Higher Order Categorical Logic, vol. 7. Cambridge Studies in Advanced Mathematics, Cambridge (1986)Google Scholar
  29. 29.
    Lamo, Y.: The Institution of Multialgebras—A General Framework for Algebraic Software Development. PhD thesis, University of Bergen (2003)Google Scholar
  30. 30.
    Mac Lane S.: Categories for the Working Mathematician. 2nd edn. Springer, New York (1998)MATHGoogle Scholar
  31. 31.
    Matthiessen G.: Regular and strongly finitary structures over strongly algebroidal categories. Can. J. Math. 30, 250–261 (1978)MATHMathSciNetGoogle Scholar
  32. 32.
    Meseguer J.: Conditional rewriting logic as a unified model of concurrency. Theor. Comput. Sci. 96(1), 73–155 (1992)MATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Morley M., Vaught R.: Homogeneous universal models. Math. Scand. 11, 37–57 (1962)MATHMathSciNetGoogle Scholar
  34. 34.
    Mossakowski T.: Relating CASL with other specification languages: the institution level. Theor. Comput. Sci. 286, 367–475 (2002)MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Mossakowski T., Diaconescu R., Tarleck A.: What is a logic translation?.  Log. Univ. 3(1), 59–94 (2009)CrossRefGoogle Scholar
  36. 36.
    Mossakowski T., Goguen J., Diaconescu R., Tarlecki A.: What is a logic?. In: Béziau, J.-Y. (eds) Logica Universalis, pp. 113–133. Birkhäuser Boston, Basel (2005)CrossRefGoogle Scholar
  37. 37.
    Petria M., Diaconescu R.: Abstract beth definability in institutions. J. Symb. Log. 71(3), 1002–1028 (2006)MATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    Sannella D., Tarlecki A.: Specifications in an arbitrary institution. Inf. Control 76, 165–210 (1988)MATHMathSciNetGoogle Scholar
  39. 39.
    Schröder, L., Mossakowski, T., Lüth, C.: Type class polymorphism in an institutional framework. In: Fiadeiro, J. (ed.) Recent Trends in Algebraic Development Techniques, 17th International Workshop (WADT 2004), Lecture Notes in Computer Science, vol. 3423, pp. 234–248. Springer, Berlin, 2004Google Scholar
  40. 40.
    Shelah S.: Every two elementary equivalent models have isomorphic ultrapowers. Isr. J. Math. 10, 224–233 (1971)MATHCrossRefGoogle Scholar
  41. 41.
    Tarlecki, A.: Bits and pieces of the theory of institution. In: Pitt, D., Abramsky, S. Poigné, A., Rydeheard, D. (eds.) Proceedings, Summer Workshop on Category Theory and Computer Programming, Lecture Notes in Computer Science, vol. 240, pp. 334–360. Springer (1986)Google Scholar
  42. 42.
    Tarlecki A.: On the existence of free models in abstract algebraic institutions. Theor. Comput. Sci. 37, 269–304 (1986)CrossRefMathSciNetGoogle Scholar
  43. 43.
    Tarlecki A.: Quasi-varieties in abstract algebraic institutions. J. Comput. Syst. Sci. 33(3), 333–360 (1986)MATHCrossRefMathSciNetGoogle Scholar
  44. 44.
    Tarlecki, A.: Towards heterogeneous specifications. In: Gabbay, D., van Rijke, M. (eds.) Proceedings, International Conference on Frontiers of Combining Systems (FroCoS’98), pp. 337–360. Research Studies Press (2000)Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Institute of Mathematics “Simion Stoilow” of the Romanian AcademyBucharestRomania
  2. 2.Şcoala Normală Superioară BucureştiBucharestRomania

Personalised recommendations