Archive for Mathematical Logic

, Volume 49, Issue 5, pp 603–616 | Cite as

Glueing continuous functions constructively

Article

Abstract

The glueing of (sequentially, pointwise, or uniformly) continuous functions that coincide on the intersection of their closed domains is examined in the light of Bishop-style constructive analysis. This requires us to pay attention to the way that the two domains intersect.

Keywords

Constructive mathematics Continuity Glueing Reverse mathematics 

Mathematics Subject Classification (2000)

03F60 26E40 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aczel, P., Rathjen, M.: Notes on Constructive Set Theory. Report No. 40. Institut Mittag–Leffler. Royal Swedish Academy of Sciences. (2001)Google Scholar
  2. 2.
    Armstrong M.A.: Basic Topology. Springer, New York (1983)MATHGoogle Scholar
  3. 3.
    Berger J.: The fan theorem and uniform continuity. In: Cooper, S.B., Löwe, B., Torenvliet, L. (eds) Computability in Europe. Lecture Notes in Computer Science, vol. 3526, pp. 18–22. Springer, Berlin (2005)Google Scholar
  4. 4.
    Berger J., Bridges D.S.: The fan theorem and positive-valued uniformly continuous functions on compact intervals. N. Z. J. Math. 38, 129–135 (2008)MATHMathSciNetGoogle Scholar
  5. 5.
    Bishop E.A.: Foundations of Constructive Analysis. McGraw-Hill, New York (1967)MATHGoogle Scholar
  6. 6.
    Bishop E.A., Bridges D.S.: Constructive Analysis. Grundlehren der Math. Wiss. Springer, Berlin (1985)Google Scholar
  7. 7.
    Bridges D.S., Diener H.: The pseudocompactness of [0,1] is equivalent to the uniform continuity theorem. J. Symb. Log. 72(4), 1379–1383 (2008)MathSciNetGoogle Scholar
  8. 8.
    Bridges D.S., Richman F.: Varieties of Constructive Mathematics. London Math. Soc. Lecture Notes, vol. 97, Cambridge University Press, London (1987)Google Scholar
  9. 9.
    Bridges D.S., Ishihara H.: Complements of intersections in constructive mathematics. Math. Log. Quart. 40, 35–43 (1994)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Bridges D.S., Vîţă L.S.: Techniques of Constructive Analysis, Universitext. Springer, New York (2006)Google Scholar
  11. 11.
    Diener, H.: Compactness under Constructive Scrutiny. Ph.D. thesis. University of Canterbury (2008)Google Scholar
  12. 12.
    Diener H., Loeb I.: Sequences of real functions on [0,1] in constructive reverse mathematics. Ann. Pure Appl. Log. 157(1), 50–61 (2009)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Diener, H., Loeb, I.: Constructive Reverse Investigations into Differential Equations. University of Canterbury (preprint) (2009)Google Scholar
  14. 14.
    Friedman H.M.: Set theoretic foundations for constructive analysis. Ann. Math. 105(1), 1–28 (1977)CrossRefGoogle Scholar
  15. 15.
    Ishihara H.: Continuity and nondiscontinuity in constructive mathematics. J. Symb. Log. 56(4), 1349–1354 (1991)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Ishihara H.: Continuity properties in constructive mathematics. J. Symb. Log. 57(2), 557–565 (1992)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Ishihara H.: A constructive version of Banach’s inverse mapping theorem. N. Z. J. Math. 23, 71–75 (1994)MATHMathSciNetGoogle Scholar
  18. 18.
    Ishihara H.: Reverse mathematics in Bishop’s constructive mathematics. Phil. Scientiae, Cahier Spécial 6, 43–59 (2006)Google Scholar
  19. 19.
    Ishihara H., Mines R.: Various continuity properties in constructive analysis. In: Schuster, P.M., Berger, U., Osswald, H. (eds) Reuniting the Antipodes—Constructive and Nonstandard Views of the Continuum. Synthese Library, 306, pp. 103–110. Kluwer, Dordrecht (2001)Google Scholar
  20. 20.
    Ishihara H., Schuster P.M.: Compactness under constructive scrutiny. Math. Log. Quart. 50(6), 540–550 (2004)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Kushner, B.A.: Lectures on Constructive Mathematical Analysis. Amer. Math. Soc. Providence RI, 1985Google Scholar
  22. 22.
    Myhill J.: Constructive set theory. J. Symb. Log. 40(3), 347–382 (1975)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Singer I.M., Thorpe J.A.: Lecture Notes on Elementary Topology and Geometry, Undergrad. Texts in Math. Springer, New York (1967)Google Scholar
  24. 24.
    Troelstra A.S., van Dalen D.: Constructivism in Mathematics: an Introduction (two volumes). North Holland, Amsterdam (1988)Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsUniversity of CanterburyChristchurchNew Zealand
  2. 2.Faculty of PhilosophyVU University AmsterdamAmsterdamThe Netherlands

Personalised recommendations