Archive for Mathematical Logic

, Volume 48, Issue 6, pp 551–577 | Cite as

Deep sequent systems for modal logic

Article

Abstract

We see a systematic set of cut-free axiomatisations for all the basic normal modal logics formed by some combination the axioms d, t, b, 4, 5. They employ a form of deep inference but otherwise stay very close to Gentzen’s sequent calculus, in particular they enjoy a subformula property in the literal sense. No semantic notions are used inside the proof systems, in particular there is no use of labels. All their rules are invertible and the rules cut, weakening and contraction are admissible. All systems admit a straightforward terminating proof search procedure as well as a syntactic cut elimination procedure.

Keywords

Nested sequents Modal logic Cut elimination Deep inference 

Mathematics Subject Classification (2000)

03F05 03B45 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Avron A.: The method of hypersequents in the proof theory of propositional non-classical logics. In: Hodges, W., Hyland, M., Steinhorn, C., Truss, J. (eds) Logic: From Foundations to Applications. Proceedings of the Logic Colloquium, Keele, UK, 1993, pp. 1–32. Oxford University Press, New York (1996)Google Scholar
  2. 2.
    Belnap N.D. Jr: Display logic. J. Philos. Log. 11, 375–417 (1982)MATHMathSciNetGoogle Scholar
  3. 3.
    Brünnler, K.: Deep Inference and Symmetry in Classical Proofs. PhD thesis, Technische Universität Dresden (2003)Google Scholar
  4. 4.
    Brünnler K.: Deep sequent systems for modal logic. In: Governatori, G., Hodkinson, I., Venema, Y. (eds) Advances in Modal Logic, vol. 6, pp. 107–119. College Publications, London (2006)Google Scholar
  5. 5.
    Brünnler K., Tiu A.F.: A local system for classical logic. In: Nieuwenhuis, R., Voronkov, A. (eds) LPAR 2001. Lecture Notes in Artificial Intelligence, vol. 2250, pp. 347–361. Springer, New York (2001)Google Scholar
  6. 6.
    Bull R.A.: Cut elimination for propositional dynamic logic without *. Math. Log. Grundlagen Math. 38, 85–100 (1992)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Garson, J.: Modal logic. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy. Stanford University, Spring (2008). http://plato.stanford.edu/archives/spr2008/entries/logic-modal/
  8. 8.
    Guglielmi A.: A system of interaction and structure. ACM Trans. Comput. Log. 8(1), 1–64 (2007)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Guglielmi A., Straßburger L.: Non-commutativity and MELL in the calculus of structures. In: Fribourg, L. (eds) CSL 2001. Lecture Notes in Computer Science, vol. 2142, pp. 54–68. Springer, New York (2001)Google Scholar
  10. 10.
    Hein R., Stewart C.: Purity through unravelling. In: Bruscoli, P., Lamarche, F., Stewart, C. (eds) Structures and Deduction, pp. 126–143. Technische Universität Dresden, Dresden (2005)Google Scholar
  11. 11.
    Kashima R.: Cut-free sequent calculi for some tense logics. Stud. Log. 53, 119–135 (1994)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Martini S., Masini A.: A computational interpretation of modal proofs. In: Wansing, H. (eds) Proof Theory of Modal Logic. Applied Logic Series, vol. 2, pp. 213–241. Kluwer, Dordrecht (1996)Google Scholar
  13. 13.
    Negri S.: Proof analysis in modal logic. J. Philos. Log. 34(5–6), 507–544 (2005)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Poggiolesi F.: The tree-hypersequent method for modal propositional logic. In: Makinson, D., Malinowski, J., Wansing, H. (eds) Towards Mathematical Philosophy, Trends in Logic, pp. 9–30. Springer, New York (2009)Google Scholar
  15. 15.
    Sato M.: A study of Kripke-type models for some modal logics by Gentzen’s sequential method. Publ. Res. Inst. Math. Sci. Kyoto Univ. 13, 381–468 (1977)CrossRefGoogle Scholar
  16. 16.
    Stewart C., Stouppa P.: A systematic proof theory for several modal logics. In: Schmidt, R., Pratt-Hartmann, I., Reynolds, M., Wansing, H. (eds) Advances in Modal Logic, vol. 5, pp. 309–333. King’s College Publications, London (2005)Google Scholar
  17. 17.
    Stouppa P.: A deep inference system for the modal logic S5. Stud. Log. 85(2), 199–214 (2007)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Straßburger, L.: Linear Logic and Noncommutativity in the Calculus of Structures. PhD thesis, Technische Universität Dresden (2003)Google Scholar
  19. 19.
    Troelstra A.S., Schwichtenberg H.: Basic Proof Theory. Cambridge University Press, London (1996)MATHGoogle Scholar
  20. 20.
    Wansing H.: Displaying Modal Logic. Trends in Logic Series, vol. 3. Kluwer, Dordrecht (1998)Google Scholar
  21. 21.
    Wansing H.: Sequent systems for modal logics. In: Gabbay, D., Guenther, F. (eds) Handbook of Philosophical Logic, vol. 8, 2nd edn, pp. 61–145. Kluwer, Dordrecht (2002)Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Institut für AngewandteMathematik und InformatikBernSwitzerland

Personalised recommendations