Archive for Mathematical Logic

, Volume 48, Issue 5, pp 437–448 | Cite as

Constructive notions of equicontinuity

  • Douglas S. Bridges


In the informal setting of Bishop-style constructive reverse mathematics we discuss the connection between the antithesis of Specker’s theorem, Ishihara’s principle BD-N, and various types of equicontinuity. In particular, we prove that the implication from pointwise equicontinuity to uniform sequential equicontinuity is equivalent to the antithesis of Specker’s theorem; and that, for a family of functions on a separable metric space, the implication from uniform sequential equicontinuity to uniform equicontinuity is equivalent to BD-N.


Constructive Reverse mathematics Anti-specker property Pseudobounded Fan theorem 

Mathematics Subject Classification (2000)



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aczel, P., Rathjen, M.J.: Notes on constructive set theory, Report No. 40. Institut Mittag–Leffler, Royal Swedish Academy of Sciences (2001)Google Scholar
  2. 2.
    Bishop, E.A., Bridges, D.S.: Constructive analysis, Grundlehren der Math. Wiss. 279. Springer-Verlag, Heidelberg (1985)Google Scholar
  3. 3.
    Berger, J.: A separation result for varieties of Brouwer’s fan theorem. University of Munich, (2009, preprint)Google Scholar
  4. 4.
    Berger J., Bridges D.S.: A fan-theoretic equivalent of the antithesis of Specker’s theorem. Indag. Math. N.S. 18(2), 195–202 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Berger J., Bridges D.S.: The anti-Specker property, a Heine–Borel property, and uniform continuity. Arch. Math. Logic 46(7–8), 583–592 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Bridges, D.S.: Omniscience, sequential compactness, and the anti-Specker property (2009, submitted)Google Scholar
  7. 7.
    Bridges D.S., Diener H.: The pseudocompactness of [0, 1] is equivalent to the uniform continuity theorem. J. Symb. Logic 72(4), 1379–1383 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Bridges, D.S., Diener, H.: The anti-Specker property, positivity, and total boundedness. University of Canterbury (2009, preprint)Google Scholar
  9. 9.
    Bridges D.S., Richman F.: Varieties of Constructive Mathematics, London Mathematical Society Lecture Notes 97. Cambridge University Press, Cambridge (1987)Google Scholar
  10. 10.
    Bridges, D.S., Vîţă, L.S.: Techniques of Constructive Analysis. Universitext, Springer, New York (2006)Google Scholar
  11. 11.
    Bridges D.S., Ishihara H., Schuster P.M., Vîţă L.S.: Strong continuity implies uniform sequential continuity. Arch. Math. Logic 44, 887–895 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    de Swart H.: Elements of intuitionistic analysis; the stone-weierstrass theorem and Ascoli’s theorem. Zeit. Math. Logik und Gründlagen Math. 22, 501–508 (1976)zbMATHCrossRefGoogle Scholar
  13. 13.
    Diener, H.: Compactness under constructive scrutiny. Ph.D. thesis, University of Canterbury (2008)Google Scholar
  14. 14.
    Diener H., Loeb I.: Sequences of real functions on [0, 1] in constructive reverse mathematics. Ann Pure Appl. Logic 157, 50–61 (2009)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Dieudonné J.A.: Foundations of Modern Analysis. Academic Press, New York (1960)zbMATHGoogle Scholar
  16. 16.
    Friedman H.M.: Set Theoretic foundations for constructive analysis. Ann. Math. 105(1), 1–28 (1977)CrossRefGoogle Scholar
  17. 17.
    Ishihara H.: Continuity properties in constructive mathematics. J. Symb. Logic 57, 557–565 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Ishihara H.: Sequential continuity in constructive mathematics. In: Calude, C.S., Dinneen, M.J., Sburlan, S.(eds) Combinatorics, Computability and Logic, pp. 5–12. Springer, London (2004)Google Scholar
  19. 19.
    Ishihara H., Yoshida S.: A constructive look at the completeness of \({\mathcal{D}({\bf R})}\) . J. Symb. Logic 67, 1511–1519 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Ishihara H.: Reverse mathematics in Bishop’s constructive mathematics. Phil. Sci. Cahier Special 6, 43–59 (2006)Google Scholar
  21. 21.
    Lietz, P.: From constructive mathematics to computable analysis via the realizability interpretation. Ph.D. Thesis, Technische Universität, Darmstadt, Germany (2004)Google Scholar
  22. 22.
    Loeb I.: Equivalents of the (weak) fan theorem. Ann. Pure Appl. Logic 132, 51–66 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Myhill J.: Constructive set theory. J. Symb. Logic 40(3), 347–382 (1975)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Simpson, S.G.: Subsystems of Second Order Arithmetic (2nd edn.). Perspectives in logic, association for symbolic logic. (2007, to appear)Google Scholar
  25. 25.
    Specker E.: Nicht konstruktiv beweisbare Sätze der analysis. J. Symb. Logic 14, 145–158 (1949)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsUniversity of CanterburyChristchurchNew Zealand

Personalised recommendations