Archive for Mathematical Logic

, Volume 48, Issue 1, pp 25–38 | Cite as

Categoricity of computable infinitary theories

  • W. Calvert
  • S. S. Goncharov
  • J. F. Knight
  • Jessica Millar
Article
  • 41 Downloads

Abstract

Computable structures of Scott rank \({\omega_1^{CK}}\) are an important boundary case for structural complexity. While every countable structure is determined, up to isomorphism, by a sentence of \({\mathcal{L}_{\omega_1 \omega}}\), this sentence may not be computable. We give examples, in several familiar classes of structures, of computable structures with Scott rank \({\omega_1^{CK}}\) whose computable infinitary theories are each \({\aleph_0}\)-categorical. General conditions are given, covering many known methods for constructing computable structures with Scott rank \({\omega_1^{CK}}\), which guarantee that the resulting structure is a model of an \({\aleph_0}\)-categorical computable infinitary theory.

Mathematics Subject Classification (2000)

03C57 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Calvert, W., Goncharov, S.S., Knight, J.F.: Computable structures of Scott rank \({\omega_1^{CK}}\) in familiar classes. In: Gao, S., Jackson, S., Zhang, Y. (eds.) Advances in Logic. Con. Math., pp. 43–66 (2007)Google Scholar
  2. 2.
    Calvert W., Knight J.F., Millar J.: Trees of Scott rank \({\omega_1^{CK}}\), and computable approximability. J. Symb. Logic 71, 283–298 (2006)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Friedman H., Stanley L.: A Borel reducibility theory for classes of countable structures. J. Symb. Logic 54, 894–914 (1989)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Goncharov S.S., Harizanov V.S., Knight J.F., Shore R.: \({\Pi^1_1}\) relations and paths through \({\mathcal{O}}\). J. Symb. Logic 69, 585–611 (2004)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Harrison J.: Recursive pseudo well-orderings. Trans. Am. Math. Soc. 131, 526–543 (1968)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Hirschfeldt D., Khoussainov B., Shore R., Slinko A.: Degree spectra and computable dimension in algebraic structures. Ann. Pure Appl. Logic 115, 71–113 (2002)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Keisler, J.H.: Model Theory for Infinitary Logic. North-Holland, Amsterdam (1971)Google Scholar
  8. 8.
    Knight, J.F., Millar, J.: Computable structures of Scott rank \({\omega_1^{CK}}\). J. Math. Logic (submitted data)Google Scholar
  9. 9.
    Makkai M.: An example concerning Scott heights. J. Symb. Logic 46, 301–318 (1981)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Marker D.: Model Theory: An Introduction. Springer, Berlin (2002)MATHGoogle Scholar
  11. 11.
    Millar, J., Sacks, G.: Atomic models higher up, pre-printGoogle Scholar
  12. 12.
    Nadel M.E.: Scott sentences for admissible sets. Ann. Math. Logic 7, 267–294 (1974)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Soskov I.N.: Intrinsically \({\Delta _{1}^{1}}\) relations. Math. Logic Q. 42, 469–480 (1996)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • W. Calvert
    • 1
  • S. S. Goncharov
    • 2
  • J. F. Knight
    • 3
  • Jessica Millar
    • 4
  1. 1.Department of Mathematics and StatisticsMurray State UniversityMurrayUSA
  2. 2.Institute of MathematicsAcademy of Sciences, Siberian BranchNovosibirskRussia
  3. 3.Department of MathematicsUniversity of Notre DameNotre DameUSA
  4. 4.Department of MathematicsBrown UniversityProvidenceUSA

Personalised recommendations