Archive for Mathematical Logic

, Volume 47, Issue 3, pp 205–210 | Cite as

Subsystems of second-order arithmetic between RCA0 and WKL0

  • Carl Mummert


We study the Lindenbaum algebra \({\fancyscript{A}}\) (WKL o, RCA o) of sentences in the language of second-order arithmetic that imply RCA o and are provable from WKL o. We explore the relationship between \({\Sigma^1_1}\) sentences in \({\fancyscript{A}}\) (WKL o, RCA o) and \({\Pi^0_1}\) classes of subsets of ω. By applying a result of Binns and Simpson (Arch. Math. Logic 43(3), 399–414, 2004) about \({\Pi^0_1}\) classes, we give a specific embedding of the free distributive lattice with countably many generators into \({\fancyscript{A}}\) (WKL o, RCA o).


Reverse mathematics Medvedev reducibility Muchnik reducibility Second order arithmetic 

Mathematics Subject Classification (2000)

03B30 03F35 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ambos-Spies K., Kjos-Hanssen B., Lempp S., Slaman T.A.: Comparing DNR and WWKL. J. Symbol. Logic 69(4), 1089–1104 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Binns S., Simpson S.G.: Embeddings into the Medvedev and Muchnik lattices of \({\Pi^0_1}\) classes. Arch. Math. Logic 43(3), 399–414 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Cenzer, D., Jockusch Jr., C.G.: \({\Pi_1^0}\) classes—structure and applications. In: Computability theory and its applications (Boulder, CO, 1999), Contemp. Math., vol. 257, pp. 39–59. Am. Math. Soc., Providence, RI (2000)Google Scholar
  4. 4.
    Grätzer, G.: General lattice theory, pure and applied mathematics, vol. 75. Academic Press Inc. (Harcourt Brace Jovanovich Publishers), New York (1978)Google Scholar
  5. 5.
    Jockusch C.G. Jr, Soare R.I.: \({\Pi_1^0}\) classes and degrees of theories. Trans. Am. Math. Soc. 173, 33–56 (1972)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Mytilinaios M.: Finite injury and Σ1-induction. J. Symbol. Logic 54(1), 38–49 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Rogers H. Jr: Theory of recursive functions and effective computability, 2nd edn. MIT Press, Cambridge (1987)Google Scholar
  8. 8.
    Simpson S.G.: Subsystems of second order arithmetic. Perspectives in mathematical logic. Springer, Heidelberg (1999)Google Scholar
  9. 9.
    Simpson, S.G.: \({\Pi^0_1}\) sets and models of WKL0. In: Reverse mathematics 2001, Lect. Notes Log., pp. 352–378. Assoc. Symbol. Logic, La Jolla, CA (2005)Google Scholar
  10. 10.
    Yu X., Simpson S.G.: Measure theory and weak König’s lemma. Arch. Math. Logic 30(3), 171– (1990)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of Mathematical SciencesAppalachian State UniversityBooneUSA
  2. 2.Department of MathematicsUniversity of MichiganAnn ArborUSA

Personalised recommendations