Archive for Mathematical Logic

, Volume 46, Issue 7–8, pp 583–592 | Cite as

The anti-Specker property, a Heine–Borel property, and uniform continuity

  • Josef Berger
  • Douglas Bridges


Working within Bishop’s constructive framework, we examine the connection between a weak version of the Heine–Borel property, a property antithetical to that in Specker’s theorem in recursive analysis, and the uniform continuity theorem for integer-valued functions. The paper is a contribution to the ongoing programme of constructive reverse mathematics.

Mathematics Subject Classification (2000)



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aczel, P., Rathjen, M.: Notes on Constructive Set Theory. Report No. 40, Institut Mittag–Leffler, Royal Swedish Academy of Sciences (2001)Google Scholar
  2. 2.
    Bishop, E.A.: Foundations of Constructive Analysis. McGraw-Hill, New York (1967)zbMATHGoogle Scholar
  3. 3.
    Bishop, E.A., Bridges, D.S.: Constructive Analysis. Grundlehren der Math. Wiss., vol. 279. Springer, Berlin (1985)Google Scholar
  4. 4.
    Berger, J.: The logical strength of the uniform continuity theorem. In: Beckmann, A., Berger, U., Löwe, B., Tucker, J.V.(eds) Logical Approaches to Computational Barriers. Lecture Notes in Computer Science, vol. 3988, pp. 35–39. Springer, Berlin (2006)CrossRefGoogle Scholar
  5. 5.
    Berger, J., Bridges, D.S.: A fan-theoretic equivalent of the antithesis of Specker’s theorem. Proc. Koninklijke Nederlandse Akad. Weten. (Indag. Math., N.S.) 18(2), 195–202 (2007)Google Scholar
  6. 6.
    Bridges, D.S.: A weak constructive sequential compactness property and the fan theorem. Logic J. IGPL 13(2), 151–158 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Bridges, D.S.: Continuity and the antithesis of Specker’s theorem (2007, submitted)Google Scholar
  8. 8.
    Bridges, D.S., Richman, F.: Varieties of Constructive Mathematics. London Mathematical Society Lecture Notes, vol. 97. Cambridge University Press, Cambridge (1987)Google Scholar
  9. 9.
    Bridges, D.S., Vîţă, L.S.: Techniques of Constructive Analysis. Universitext, Springer, New York (2006)Google Scholar
  10. 10.
    Brouwer, L.E.J.: Over de grondslagen der Wiskunde. Nieuw Archief voor Wiskunde 8, 326–328 (1908)Google Scholar
  11. 11.
    van Dalen, D.: From Brouwerian counterexamples to the creating subject. Stud. Logica 62(2), 305–314 (1999)zbMATHCrossRefGoogle Scholar
  12. 12.
    Ishihara, H.: Reverse mathematics in Bishop’s constructive mathematics. Philosophia Scientiae Cahier Special 6, 43–59 (2006)Google Scholar
  13. 13.
    Ishihara, H.: Constructive reverse mathematics: compactness properties. In: Crosilla, L., Schuster, P. (eds.) From Sets and Types to Topology and Analysis. Proc. Conference on From Sets and Types to Topology and Analysis in San Servolo, 12–16 May 2003, Oxford Logic Guides, vol. 48, pp. 245–267. Oxford University Press, Oxford (2005)Google Scholar
  14. 14.
    Ishihara, H., Schuster, P.M.: Compactness under constructive scrutiny. Math. Logic Q. 50, 540–550 (2005)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Julian, W.H., Richman, F.: A uniformly continuous function on [ 0,1] that is everywhere different from its infimum. Pac. J. Math. 111, 333–340 (1984)zbMATHMathSciNetGoogle Scholar
  16. 16.
    Loeb, I.: Equivalents of the (weak) fan theorem. Ann. Pure Appl. Logic 132, 51–66 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Friedman, H.M.: Set theoretic foundations for constructive analysis. Ann. Math. 105(1), 1–28 (1977)CrossRefGoogle Scholar
  18. 18.
    Myhill, J.: Constructive set theory. J. Symb. Logic 40(3), 347–382 (1975)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Simpson, S.G.: Subsystems of Second Order Arithmetic, 2nd edn. Perspect. Logic Assoc. Symb. Logic (in press)Google Scholar
  20. 20.
    Specker, E.: Nicht konstruktiv beweisbare Sätze der Analysis. J. Symb. Logic 14(3), 145–158 (1949)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Troelstra, A.S., van Dalen, D.: Constructivism in Mathematics: An Introduction (two volumes). North Holland, Amsterdam (1988)Google Scholar
  22. 22.
    Veldman, W.: Brouwer’s Fan Theorem as an Axiom and as a Contrast to Kleene’s Alternative. Radboud Universiteit, Nijmegen (2005, preprint)Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.School of Information ScienceJapan Advanced Institute of Science and TechnologyIshikawaJapan
  2. 2.Department of Mathematics and StatisticsUniversity of CanterburyChristchurchNew Zealand

Personalised recommendations