Archive for Mathematical Logic

, Volume 46, Issue 2, pp 73–92 | Cite as

Complexity of admissible rules

Article

Abstract

We investigate the computational complexity of deciding whether a given inference rule is admissible for some modal and superintuitionistic logics. We state a broad condition under which the admissibility problem is coNEXP-hard. We also show that admissibility in several well-known systems (including GL, S4, and IPC) is in coNE, thus obtaining a sharp complexity estimate for admissibility in these systems.

Keywords

Admissible rules Computational complexity Modal logics Intermediate logics 

Mathematics Subject Classification (2000)

03B45 03B55 03D15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blackburn P., Venema Y. and Rijke M. (2001). Modal logic, Cambridge Tracts in Theoretical Computer Science, vol. 53. Cambridge University Press, Cambridge Google Scholar
  2. 2.
    Bull R.A. (1966). That all normal extensions of S4.3 have the finite model property. Zeitschrift mathematische Logik Grundlagen Mathematik 12: 341–344 MathSciNetGoogle Scholar
  3. 3.
    Chagrov, A.V.: On the complexity of propositional logics. In: Complexity problems in Mathematical Logic, pp. 80–90. Kalinin State University (1985) (in Russian)Google Scholar
  4. 4.
    Chagrov A.V. (1992). A decidable modal logic with the undecidable admissibility problem for inference rules. Algebra Logic 31: 53–55 CrossRefMathSciNetGoogle Scholar
  5. 5.
    Chagrov A.V. and Zakharyaschev M. (1997). Modal Logic. Oxford Logic Guides, vol. 35. Oxford University Press, Oxford Google Scholar
  6. 6.
    Fagin, R.: Generalized first-order spectra and polynomial-time recognizable sets. In: Karp, R.M. (ed.) Complexity of Computation SIAM-AMS Proceedings, vol. 7, pp. 43–73 (1974)Google Scholar
  7. 7.
    Friedman H.M. (1975). One hundred and two problems in mathematical logic. J. Symbolic Logic 40(2): 113–129 CrossRefMathSciNetGoogle Scholar
  8. 8.
    Ghilardi S. (1999). Unification in intuitionistic logic. J. Symbolic Logic 64(2): 859–880 CrossRefMathSciNetGoogle Scholar
  9. 9.
    Ghilardi S. (2000). Best solving modal equations. Ann. Pure Appl. Logic 102(3): 183–198 CrossRefMathSciNetGoogle Scholar
  10. 10.
    Ghilardi S. (2002). A resolution/tableaux algorithm for projective approximations in IPC. Logic J. IGPL 10(3): 229–243 CrossRefMathSciNetGoogle Scholar
  11. 11.
    Iemhoff R. (2001). On the admissible rules of intuitionistic propositional logic. J. Symbolic Logic 66(1): 281–294 CrossRefMathSciNetGoogle Scholar
  12. 12.
    Iemhoff R. (2005). Intermediate logics and Visser’s rules. Notre Dame J. Formal Logic 46(1): 65–81 CrossRefMathSciNetGoogle Scholar
  13. 13.
    Iemhoff R. (2006). On the rules of intermediate logics. Arch. Math. Logic 45(5): 581–599 CrossRefMathSciNetGoogle Scholar
  14. 14.
    Jeřábek E. (2005). Admissible rules of modal logics. J. Logic Comput. 15(4): 411–431 CrossRefMathSciNetGoogle Scholar
  15. 15.
    Kuznetsov, A.V.: On superintuitionistic logics. In: Proceedings of the International Congress of Mathematicians (Vancouver), pp. 243–249 (1975)Google Scholar
  16. 16.
    Ladner R.E. (1977). The computational complexity of provability in systems of modal propositional logic. SIAM J. Comput. 6(3): 467–480 CrossRefMathSciNetGoogle Scholar
  17. 17.
    Papadimitriou C.H. (1994). Computational complexity. Addison-Wesley, Reading MATHGoogle Scholar
  18. 18.
    Rybakov V.V. (1997). Admissibility of logical inference rules. Studies in Logic and the Foundations of Mathematics, vol 136. Elsevier, Amsterdam Google Scholar
  19. 19.
    Spaan, E.: Complexity of modal logics. Ph.D. thesis, University of Amsterdam (1993)Google Scholar
  20. 20.
    Statman R. (1979). Intuitionistic propositional logic is polynomial-space complete. Theor. Comput. Sci. 9(1): 67–72 CrossRefMathSciNetGoogle Scholar
  21. 21.
    Zakharyaschev M. (1996). Canonical formulas for K4. Part II: Cofinal subframe logics. J. Symbolic Logic 61(2): 421–449 CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Mathematical Institute of the Academy of Sciences of the Czech RepublicPraha 1Czech Republic

Personalised recommendations