Archive for Mathematical Logic

, Volume 45, Issue 8, pp 947–981 | Cite as

A common generalization for MV-algebras and Łukasiewicz–Moisil algebras

Article

Abstract

We introduce the notion of n-nuanced MV-algebra by performing a Łukasiewicz–Moisil nuancing construction on top of MV-algebras. These structures extend both MV-algebras and Łukasiewicz–Moisil algebras, thus unifying two important types of structures in the algebra of logic. On a logical level, n-nuanced MV-algebras amalgamate two distinct approaches to many valuedness: that of the infinitely valued Łukasiewicz logic, more related in spirit to the fuzzy approach, and that of Moisil n-nuanced logic, which is more concerned with nuances of truth rather than truth degree. We study n-nuanced MV-algebras mainly from the algebraic and categorical points of view, and also consider some basic model-theoretic aspects. The relationship with a suitable notion of n-nuanced ordered group via an extension of the Γ construction is also analyzed.

Keywords

n-Nuanced MV-algebra Łukasiewicz–Moisil algebra n-Nuanced ordered group 

Mathematics Subject Classification (2000)

06D35 03G20 06F15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Belluce L.P. (1986) Semisimple algebras of infinite valued logic and bold fuzzy set theory. Can. J. Math. 38, 1356–1379MATHMathSciNetGoogle Scholar
  2. 2.
    Belluce L.P., Di Nola A., Lettieri A. (1993) Local MV-algebras. Redincoti Circolo Matematico di Palermo 42, 347–361MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Boicescu V., Filipoiu A., Georgescu G., Rudeanu S. (1991) Łukasiewicz–Moisil algebras. North-Holland, AmsterdamMATHGoogle Scholar
  4. 4.
    Burris S., Sankappanavar H.P. (1981) A course in universal algebra Graduate Texts in Mathematics No 78. Springer, Berlin Heidelberg New YorkGoogle Scholar
  5. 5.
    Chang C.C. (1958) Algebraic analysis of many valued logics. Trans. Am. Math. Soc. 88, 467–490MATHCrossRefGoogle Scholar
  6. 6.
    Chang C.C., Keisler H.J. (1973) Model theory. North Holland, AmsterdamMATHGoogle Scholar
  7. 7.
    Cignoli R., D’Ottaviano I., Mundici D. (2000) Algebraic Foundations of Many-Valued Reasoning. Kluwer, Dordrecht, p. 7Google Scholar
  8. 8.
    Cignoli R. (1982) Proper n-valued Łukasiewicz algebras as S-algebras of Łukasiewicz n-valued propositional calculi. Studia Logica 41, 3–16MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Di Nola A. (1993) MV-algebras in the treatment of uncertainty. In: Löwen P., Roubens E. (eds) Proceedings of the International IFSA Congress, Bruxelles, 1991. Kluwer, Dordrecht, pp. 123–131Google Scholar
  10. 10.
    Georgescu G., Vraciu C. (1970) On the characterization of centered Łukasiwicz algebras. J. Algebra 16, 486–495MATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Grigolia R.S.: Algebraic analysis of Łukasiewicz–Tarski logical systems. In: Wojcicki R., Malinkowski G. (eds.) Selected Papers on Łukasiewicz Sentential Calculi, Osolineum, pp. 81–92. Wroclav (1977)Google Scholar
  12. 12.
    Iorgulescu A. (1998) Connections between MVn algebras and n-valued Lukasiewicz–Moisil algebras Part I. Discrete Math. 181, 155–177MATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Iorgulescu A. (1999) Connections between MVn algebras and n-valued Lukasiewicz–Moisil algebras Part II. Discrete Math. 202, 113–134MATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Iorgulescu A. (2000) Connections between MVn algebras and n-valued Lukasiewicz–Moisil algebras Part IV. J. Univ. Comput. Sci. 6(I): 139–154MathSciNetGoogle Scholar
  15. 15.
    Łukasiewicz J. (1920) On three-valued logic (Polish). Ruch Filozoficzny 5, 160–171Google Scholar
  16. 16.
    Lukasiewicz J., Tarski A. (1930) Untersuchungen uber den Aussagenkalkul. C. R. Séances Soc. Sci. Lettres Varsovie 23, 30–50MATHGoogle Scholar
  17. 17.
    Mac Lane S. (1971) Categories for the Working Mathematician. Springer, Berlin Heidelberg New YorkMATHGoogle Scholar
  18. 18.
    Moisil, Gr.C.: Notes sur les logique non-chrysippiennes. Ann. Sci. Univ. Jassy 27, 86–98, 176–185, 233–243 (1941)Google Scholar
  19. 19.
    Moisil Gr.C. (1963) Le algebre di Lukasiewicz. An. Univ. C.I. Parhon, Acta Logica 6, 97–135MATHMathSciNetGoogle Scholar
  20. 20.
    Moisil Gr.C. (1965) Old and New Essays on Non-classical Logics (Romanian). Ştiinţifică, BucharestGoogle Scholar
  21. 21.
    Moisil Gr.C. (1972) Essais sur les logiques non-chrysippiennes. Academiei, BucharestMATHGoogle Scholar
  22. 22.
    Moisil Gr.C. (1975) Lectures on the Logic of Fuzzy Reasoning. Ştiinţifică, BucharestGoogle Scholar
  23. 23.
    Monk J.D. (1976) Mathematical Logic. Springer, Berlin Heidelberg New YorkMATHGoogle Scholar
  24. 24.
    Mundici D. (1986) Interpretation of AFC*-algebras in Łukasiewicz sentential calculus. J. Funct. Anal. 65, 15–63MATHMathSciNetCrossRefGoogle Scholar
  25. 25.
    Mundici D. (1988) Free products in the category of abelian l-groups with strong unit. J. Algebra 113, 81–109MathSciNetCrossRefGoogle Scholar
  26. 26.
    Pawlak Z. (1991) Rough Sets. Kluwer, DordrechtMATHGoogle Scholar
  27. 27.
    Post E. (1921) Introduction to a general theory of elementary propositions. Am. J. Math. 43, 163–185MATHMathSciNetCrossRefGoogle Scholar
  28. 28.
    Rasiowa H. An Algebraic Approach to Non-classical Logic. North-Holland, Amsterdam, Polish Scientific Publ., Warszawa (1974)Google Scholar
  29. 29.
    Rosenbloom P. (1942) Post algebras. Postulates and general theory. Am. J. Math. 64, 163–183MathSciNetGoogle Scholar
  30. 30.
    Zadeh L. (1965) Fuzzy sets. Inf. Control 8, 338–353MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Faculty of MathematicsUniversity of BucharestBucharestRomania
  2. 2.Institute of Mathematics “Simion Stoilow” of the Romanian AcademyBucharestRomania
  3. 3.Deparment of Computer ScienceUniversity of Illinois at Urbana-ChampaignChampaignUSA

Personalised recommendations