Archive for Mathematical Logic

, Volume 45, Issue 5, pp 569–580 | Cite as

On interplay of quantifiers in Gödel-Dummett fuzzy logics

Article

Abstract

Axiomatization of Gödel-Dummett predicate logics S2G, S3G, and PG, where PG is the weakest logic in which all prenex operations are sound, and the relationships of these logics to logics known from the literature are discussed. Examples of non-prenexable formulas are given for those logics where some prenex operation is not available. Inter-expressibility of quantifiers is explored for each of the considered logics.

Key words or phrases

Gödel-Dummett fuzzy logics Kripke model prenexability inter-expressibility quantifiers 

Mathematics Subject Classification (2000)

03B20 03B52 03B55 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baaz, M., Preining, N., Zach, R.: Characterization of the Axiomatizable Prenex Fragments of First-Order Gödel Logics. In: 33rd International Symposium on Multiple-valued Logic, May 16–19, 2003, pp 175–180, Tokyo, IEEE Computer Society Press, 2003Google Scholar
  2. 2.
    Dummett, M.: A Propositional Calculus with Denumerable Matrix. J. Symbolic Logic 25, 97–106 (1959)MathSciNetGoogle Scholar
  3. 3.
    Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer, 1998Google Scholar
  4. 4.
    Hájek, P.: A Non-Arithmetical Gödel Logic. Logic Journal of the IGPL 13 (4), 435–441 (2005). A special issue devoted to selected papers presented at the Challenge of Semantics workshop, Vienna, July 2004CrossRefGoogle Scholar
  5. 5.
    Kleene, S.C.: Introduction to Metamathematics. D. van Nostrand, 1952Google Scholar
  6. 6.
    Kozlíková, B.: Sémantické metody v intuicionistické predikátové logice (Semantical Methods in Intuitionistic Predicate Logic). Master's thesis, Faculty of Arts, Charles University, Department of Logic (2004)Google Scholar
  7. 7.
    Preining, N.: Complete Recursive Axiomatizability of Gödel Logics. Ph.D. Thesis, Vienna University of Technology, Austria, 2003Google Scholar
  8. 8.
    Švejdar, V., Bendová, K.: On Inter-Expressibility of Logical Connectives in Gödel Fuzzy Logic. Soft Computing 4 (2), 103–105 (2000)CrossRefGoogle Scholar
  9. 9.
    Švejdar, V.: Note on Inter-Expressibility of Logical Connectives in Finitely-Valued Gödel-Dummett Logics. Soft Computing 10 (7), 629–630 (2006)CrossRefGoogle Scholar
  10. 10.
    Takano, M.: Another Proof of Strong completeness of the Intuitionistic Fuzzy Logic. Tsukuba J. of Math. 11, 101–105 (1987)MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  1. 1.Charles UniversityCzech Republic
  2. 2.Charles UniversityPraha 1Czech Republic

Personalised recommendations