Archive for Mathematical Logic

, Volume 45, Issue 4, pp 411–422 | Cite as

Decision methods for linearly ordered Heyting algebras

  • Roy Dyckhoff
  • Sara Negri


The decision problem for positively quantified formulae in the theory of linearly ordered Heyting algebras is known, as a special case of work of Kreisel, to be solvable; a simple solution is here presented, inspired by related ideas in Gödel-Dummett logic.

Key words or phrases

lattice theory linear order Heyting algebra Gödel algebra Gödel-Dummett logic 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Avellone, A., Ferrari, M., Miglioli, P.: Duplication-free tableau calculi and related cut-free sequent calculi for the interpolable propositional intermediate logics. Log. J. IGPL 7, 447–480 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Avron, A., Konikowska, B.: Decomposition proof systems for Gödel-Dummett logics. Stud. Log. 69, 197–219 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Baaz, M., Ciabattoni, A., Fermüller, C.: Hypersequent calculi for Gödel logics—a survey. J. Log. Comput. 13, 1–27 (2003)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Baaz, M., Ciabattoni, A., Fermüller, C.: Sequent of relations calculi: a framework for analytic deduction in many-valued logics. In [15], 152–175Google Scholar
  5. 5.
    Baaz, M., Veith, H.: An axiomatization of quantified propositional Gödel logic using the Takeuti-Titani rule. In [7], 91–104Google Scholar
  6. 6.
    Balbes, R., Dwinger, P.: Distributive lattices. University of Missouri Press, 1974Google Scholar
  7. 7.
    Buss, S., Hajek, P., Pudlak, P. (eds) Logic Colloquium '98. Lect. Notes Log. 13 (2000)Google Scholar
  8. 8.
    Calude, C., Ishihara, H. (eds), Constructivity, computability, and logic. J. UCS 11 (2005)Google Scholar
  9. 9.
    Corsi, G.: Semantic trees for Dummett's logic LC. Stud. Log. 45, 199–206 (1986)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Dummett, M.A.H.: A propositional calculus with a denumerable matrix. J. Symb. Log. 24, 97–106 (1959)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Dyckhoff, R.: Contraction-free sequent calculi for intuitionistic logic. J. Symb. Log. 57, 795–807 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Dyckhoff, R.: A deterministic terminating calculus for Gödel-Dummett logic. Log. J. IGPL 7, 319–326 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Ehrenfeucht, A.: Decidability of the theory of linear ordering relation. Notices Amer. Math. Soc. 6, 268–269 (1959)Google Scholar
  14. 14.
    Fiorino, G.: Space-efficient decision procedures for three interpolable propositional intermediate logics. J. Log. Comput. 12, 955–992 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Fitting, M., Orlowska, E. (eds), Beyond two: Theory and applications of multiple-valued logics. Physica Verlag, Heidelberg, 2003Google Scholar
  16. 16.
    Gentzen, G.: Untersuchungen über das logische Schliessen I, II. Math. Z. 39, 176–210 & 405–431 (1935)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Haiman, M.: Proof theory for linear lattices. Adv. Math. 58, 209–242 (1985)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Horn, A.: Logic with truth values in a linearly ordered Heyting algebra. J. Symb. Log. 34, 395–408 (1969)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Hudelmaier, J.: An O(n log(n)) decision procedure for intuitionistic propositional logic. J. Log. Comput. 3, 63–75 (1993)zbMATHMathSciNetGoogle Scholar
  20. 20.
    Janiczak, A.: Undecidability of some simple formalized theories. Fund. Math. 40, 131–139 (1953)zbMATHMathSciNetGoogle Scholar
  21. 21.
    Jipsen, P., Tsinakis, C.: A survey of residuated lattices. in [26], 19–56Google Scholar
  22. 22.
    Kreisel, G.: Review of [20]. Math. Rev. 15, 669–670 (1954)Google Scholar
  23. 23.
    Larchey-Wendling, D.: Combining proof-search and counter-model construction for deciding Gödel-Dummett logic. CADE (Proceedings), Lect. Notes. Comput. Sci. 2392, 94–110 (2002)zbMATHMathSciNetGoogle Scholar
  24. 24.
    Larchey-Wendling, D.: Counter-model search in Gödel-Dummett logics. International Joint Conference on Automated Reasoning (Proceedings), Lect. Notes. Comput. Sci. 3097, 274–288 (2004)MathSciNetGoogle Scholar
  25. 25.
    Läuchli, H., Leonard, J.: On the elementary theory of linear order. Fund. Math. 59, 109–116 (1966)zbMATHMathSciNetGoogle Scholar
  26. 26.
    Martinez, J. (ed), Ordered Algebraic Structures. Kluwer Academic Publishers, Dordrecht, 2002Google Scholar
  27. 27.
    Negri, S.: Permutability of rules for linear lattices. in [8]Google Scholar
  28. 28.
    Negri, S., von Plato, J.: Structural proof theory. Cambridge University Press, Cambridge, 2001Google Scholar
  29. 29.
    Negri, S., von Plato, J., Coquand, T.: Proof-theoretical analysis of order relations. Arch. Math. Logic 43, 297–309 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Negri, S., von Plato, J.: Proof systems for lattice theory. Math. Struct. Comput. Sci. 14, 507–526 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Okada, M., Terui, K.: The finite model property for various fragments of intuitionistic linear logic. J. Symb. Log. 64, 790–802 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    Ono, H., Komori, Y.: Logics without the contraction rule. J. Symb. Log. 50, 169–201 (1985)CrossRefzbMATHGoogle Scholar
  33. 33.
    von Plato, J.: Skolem's discovery of Gödel-Dummett logic. Stud. Log. 73, 153–157 (2003)CrossRefzbMATHGoogle Scholar
  34. 34.
    Tamura, S.: A Gentzen formulation without the cut rule for ortholattices. Kobe J. Math. 5, 133–150 (1988)zbMATHMathSciNetGoogle Scholar
  35. 35.
    Troelstra, A.S., Schwichtenberg, H.: Basic proof theory. Cambridge University Press, 1996 & 2000Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  1. 1.School of Computer ScienceSt Andrews UniversitySt AndrewsScotland
  2. 2.Department of PhilosophyUniversity of HelsinkiFinland

Personalised recommendations