Advertisement

Archive for Mathematical Logic

, Volume 45, Issue 3, pp 323–350 | Cite as

The Hausdorff-Ershov Hierarchy in Euclidean Spaces

  • Armin Hemmerling
Article

Abstract

The topological arithmetical hierarchy is the effective version of the Borel hierarchy. Its class Δta 2 is just large enough to include several types of pointsets in Euclidean spaces ℝ k which are fundamental in computable analysis. As a crossbreed of Hausdorff's difference hierarchy in the Borel class ΔB 2 and Ershov's hierarchy in the class Δ0 2 of the arithmetical hierarchy, the Hausdorff-Ershov hierarchy introduced in this paper gives a powerful classification within Δta 2. This is based on suitable characterizations of the sets from Δta 2 which are obtained in a close analogy to those of the ΔB 2 sets as well as those of the Δ0 2 sets. A helpful tool in dealing with resolvable sets is contributed by the technique of depth analysis. On this basis, the hierarchy properties, in particular the strict inclusions between classes of different levels, can be shown by direct constructions of witness sets. The Hausdorff-Ershov hierarchy runs properly over all constructive ordinals, in contrast to Ershov's hierarchy whose denotation-independent version collapses at level ω 2. Also, some new characterizations of concepts of decidability for pointsets in Euclidean spaces are presented.

Key words or phrases

Computable analysis Effective descriptive set theory Hausdorff's difference hierarchy Ershov's hierarchy Topological arithmetical hierarchy Resolvable sets Global and local depth of sets Recursivity in analysis Approximate decidability 

Mathematics Subject Classification (2000)

03D65 03D55 03E15 03F60 26E40 68Q01 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ash, C.J., Knight, J.F.: Recursive structures and Ershov's hierarchy. Mathematical Logic Quarterly 42, 461–468 (1996)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Epstein, R.L., Haas, R., Kramer, R.L.: Hierarchies of sets and degrees below 0'. In: Logic Year 1979/80, Univ. of Connecticut. M. Lerman, J.H. Schmerl, R.I. Soare, (eds.), LN in Math 859, Springer Verlag, pp. 32–48Google Scholar
  3. 3.
    Ershov, Yu.L.: A hierarchy of sets. I; II; III. Algebra i Logica, v. 7 (1968), no.1, 47-74; no.4, 15-47; v. 9 (1970), no.1, 34–51 (English translation by Plenum P.C.)Google Scholar
  4. 4.
    Hausdorff, F.: Grundzüge der Mengenlehre. W. de Gruyter & Co., Berlin and Leipzig 1914; Reprint: Chelsea P.C., New York 1949Google Scholar
  5. 5.
    Hausdorff, F.: Mengenlehre. W. de Gruyter & Co., Berlin and Leipzig, 1927Google Scholar
  6. 6.
    Hausdorff, F.: Gesammelte Werke, Band II: ``Grundzüge der Mengenlehre''. E. Brieskorn, S.D. Chatterji, M. Epple, U. Felgner, H. Herrlich, M. Hušek, V. Kanovej, P. Koepke, G. Preuß, W. Purkert und E. Scholz, (eds.), Springer Verlag, Berlin, Heidelberg, New York, 2002Google Scholar
  7. 7.
    Hemmerling, A.: On approximate and algebraic computability over the real numbers. Theoretical Computer Science 219, 185–223 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Hemmerling, A.: Effective metric spaces and representations of the reals. Theoretical Computer Science 284, 347–372 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Hemmerling, A.: Approximate decidability in Euclidean spaces. Mathematical Logic Quarterly 49, 34–56 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Hemmerling, A.: Characterizations of the class Δta 2 over Euclidean spaces. Mathematical Logic Quarterly 50, 507–519 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Hemmerling, A.: Hierarchies of function classes defined by the first-value operator. E.-M.-Arndt-Universität Greifswald, Preprint-Reihe Mathematik, Nr. 12/2004. (PS file available from: http://www.math-inf.uni-greifswald.de/preprints/titel04); Extended abstract in: Proc. of CCA'2004. Electronic Notes in Theoretical Computer Science 120, 59–72 (2005)
  12. 12.
    Hertling, P.: Unstetigkeitsgrade von Funktionen in der effektiven Analysis. Dissertation. Informatik Berichte 208-11/1996, Fern-Uni Hagen, 1996Google Scholar
  13. 13.
    Hertling, P., Weihrauch, K.: Levels of degeneracy and exact lower complexity bounds for geometric algorithms. Proc. of the 6th Canadian Conf. on Computational Geometry, Saskatoon, 1994. pp. 237–242Google Scholar
  14. 14.
    Kanovej, V., Koepke, P.: Deskriptive Mengenlehre in Hausdorffs Grundzügen der Mengenlehre. In: [6], pp. 773–787Google Scholar
  15. 15.
    Kechris, A.S.: Classical descriptive set theory. Springer Verlag, New York, 1995Google Scholar
  16. 16.
    Ko, K.-I.: Complexity theory of real functions. Birkhäuser, Boston et al., 1991Google Scholar
  17. 17.
    Ko, K.-I., Friedman, H.: Computational complexity of real functions. Theoretical Computer Science 20, 323–352 (1982)zbMATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Kreitz, C., Weihrauch, K.: Complexity theory on real numbers and functions. LN in Computer Science 145, 165–174 (1982)zbMATHGoogle Scholar
  19. 19.
    Kuratowski, K.: Topology I. Academic Press, New York and London; PWN Warszawa, 1966Google Scholar
  20. 20.
    Moschovakis, Y.N.: Descriptive set theory. North-Holland P. C., Amsterdam et al., 1980Google Scholar
  21. 21.
    Odifreddi, P.: Classical recursion theory. North–Holland P.C., Amsterdam et al., 1989Google Scholar
  22. 22.
    Penrose, R.: The emperor's new mind. Oxford University Press, New York, 1989Google Scholar
  23. 23.
    Rogers, H. Jr.: Theory of recursive functions and effective computability. McGraw-Hill, New York, 1967Google Scholar
  24. 24.
    Selivanov, V.L.: Wadge degrees of ω-languages of deterministic Turing machines. Theoretical Informatics and Applications 37, 67–83 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Selivanov, V.L.: Difference hierarchy in ϕ-spaces. Preprint 2003, to appear in: Algebra and LogicGoogle Scholar
  26. 26.
    Wadge, W.W.: Reducibility and determinateness in the Baire space. Ph.D. Thesis. Univ. of California, Berkeley 1984Google Scholar
  27. 27.
    Weihrauch, K.: Computability on computable metric spaces. Theoretical Computer Science 113, 191–210 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Weihrauch, K.: Computable analysis. Springer–Verlag, Berlin et al., 2000Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  1. 1.Institut für Mathematik und InformatikErnst-Moritz-Arndt–Universität GreifswaldGreifswaldGermany

Personalised recommendations