Archive for Mathematical Logic

, Volume 45, Issue 2, pp 149–177 | Cite as

Fuzzy Horn logic II

Article

Abstract

The paper studies closure properties of classes of fuzzy structures defined by fuzzy implicational theories, i.e. theories whose formulas are implications between fuzzy identities. We present generalizations of results from the bivalent case. Namely, we characterize model classes of general implicational theories, finitary implicational theories, and Horn theories by means of closedness under suitable algebraic constructions.

Key words or phrases

Fuzzy logic Equational Logic Horn logic Implication Degree of provability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adámek, J.: How many variables does a quasivariety need? Algebra Universalis 27, 44–48 (1990)Google Scholar
  2. 2.
    Baaz, M.: Infinite-valued Gödel logics with 0-1 projections and relativizations. GÖDEL '96 – Logical Foundations of Mathematics, Computer Sciences and Physics, Lecture Notes in Logic vol. 6, Springer-Verlag 1996, pp 23–33Google Scholar
  3. 3.
    Banaschewski, B., Herrlich, H.: Subcategories defined by implications. Houston J. Math. 2, 149–171 (1976)Google Scholar
  4. 4.
    Bělohlávek R.: Fuzzy closure operators. J. Math. Anal. Appl. 262, 473–489 (2001)Google Scholar
  5. 5.
    Bělohlávek, R.: Fuzzy closure operators II. Soft Computing 7 (1), 53–64 (2002)Google Scholar
  6. 6.
    Bělohlávek, R.: Fuzzy equational logic. Arch. Math. Log. 41, 83–90 (2002)Google Scholar
  7. 7.
    Bělohlávek, R.: Fuzzy Relational Systems: Foundations and Principles. Kluwer Academic/Plenum Publishers, New York, 2002Google Scholar
  8. 8.
    Bělohlávek, R.: Birkhoff variety theorem and fuzzy logic. Arch. Math. Log. 42, 781–790 (2003)Google Scholar
  9. 9.
    Bělohlávek, R., Vychodil, V.: Algebras with fuzzy equalities. Fuzzy Sets and Systems (to appear)Google Scholar
  10. 10.
    Bělohlávek, R., Vychodil, V.: Fuzzy Horn logic I: proof theory. Arch. Math. Logic (to appear)Google Scholar
  11. 11.
    Bloom, S.L., Wright, J.B.: Finitary quasi varieties. J. Pure and Appl. Algebra 25, 121–154 (1982)Google Scholar
  12. 12.
    Fujiwara, T.: On the construction of the least universal Horn class containing a given class. Osaka J. Math. 8, 425–436 (1971)Google Scholar
  13. 13.
    Goguen, J.A.: L-fuzzy sets. J. Math. Anal. Appl. 18, 145–174 (1967)Google Scholar
  14. 14.
    Goguen, J.A.: The logic of inexact concepts. Synthese 18, 325–373 (1968–9)Google Scholar
  15. 15.
    Gottwald, S.: A Treatise on Many-Valued Logics. Research Studies Press, Baldock, Hertfordshire, England, 2001Google Scholar
  16. 16.
    Hájek, P.: Basic fuzzy logic and BL-algebras. Soft Computing 2, 124–128 (1998)Google Scholar
  17. 17.
    Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht, 1998Google Scholar
  18. 18.
    Hájek, P.: On very true. Fuzzy Sets and Systems 124, 329–333 (2001)Google Scholar
  19. 19.
    Höhle, U.: On the fundamentals of fuzzy set theory. J. Math. Anal. Appl. 201, 786–826 (1996)Google Scholar
  20. 20.
    Novák, V., Perfilieva, I., Močkoř, J.: Mathematical Principles of Fuzzy Logic. Kluwer, Boston, 1999Google Scholar
  21. 21.
    Pavelka, J.: On fuzzy logic I, II, III. Z. Math. Logik Grundlagen Math. 25, 45–52, 119–134, 447–464 (1979)Google Scholar
  22. 22.
    Selman, A.: Completeness of calculii for axiomatically defined classes of algebras. Algebra Universalis 2, 20–32 (1972)Google Scholar
  23. 23.
    Takeuti G., Titani S.: Globalization of intuitionistic set theory. Annals of Pure and Applied Logic 33, 195–211 (1987)Google Scholar
  24. 24.
    Vychodil, V.: Direct limits and reduced products of algebras with fuzzy equalities (submitted)Google Scholar
  25. 25.
    Wechler, W.: Universal Algebra for Computer Scientists. Springer-Verlag, Berlin Heidelberg, 1992Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  1. 1.Department Computer SciencePalacký UniversityOlomoucCzech Republic

Personalised recommendations