Archive for Mathematical Logic

, Volume 45, Issue 1, pp 3–51 | Cite as

Fuzzy Horn logic I

Article

Abstract

The paper presents generalizations of results on so-called Horn logic, well-known in universal algebra, to the setting of fuzzy logic. The theories we consider consist of formulas which are implications between identities (equations) with premises weighted by truth degrees. We adopt Pavelka style: theories are fuzzy sets of formulas and we consider degrees of provability of formulas from theories. Our basic structure of truth degrees is a complete residuated lattice. We derive a Pavelka-style completeness theorem (degree of provability equals degree of truth) from which we get some particular cases by imposing restrictions on the formulas under consideration. As a particular case, we obtain completeness of fuzzy equational logic.

Key words or phrases

Fuzzy logic Equational logic Horn logic Implication Degree of provability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baaz, M.: Infinite-valued Gödel logics with 0-1 projections and relativizations. GÖDEL '96 – Logical Foundations of Mathematics, Computer Sciences and Physics, Lecture Notes in Logic vol. 6, Springer-Verlag 1996, pp. 23–33Google Scholar
  2. 2.
    Banaschewski. B., Herrlich, H.: Subcategories defined by implications. Houston J. Math. 2, 149–171 (1976)MATHMathSciNetGoogle Scholar
  3. 3.
    Bělohlávek, R.: Fuzzy closure operators. J. Math. Anal. Appl. 262, 473–489 (2001)MathSciNetMATHGoogle Scholar
  4. 4.
    Bělohlávek, R.: Fuzzy closure operators II. Soft Computing 7 (1), 53–64 (2002)Google Scholar
  5. 5.
    Bělohlávek, R.: Fuzzy equational logic. Arch. Math. Log. 41, 83–90 (2002)MATHGoogle Scholar
  6. 6.
    Bělohlávek, R.: Fuzzy Relational Systems: Foundations and Principles. Kluwer Academic/Plenum Publishers, New York, 2002Google Scholar
  7. 7.
    Bělohlávek, R.: Birkhoff variety theorem and fuzzy logic. Arch. Math. Log. 42, 781–790 (2003)MATHGoogle Scholar
  8. 8.
    Bělohlávek, R., Funioková, T., Vychodil, V.: Fuzzy closure operators with truth stressers (submitted)Google Scholar
  9. 9.
    Bělohlávek, R., Vychodil, V.: Algebras with fuzzy equalities (submitted)Google Scholar
  10. 10.
    Bělohlávek, R., Vychodil, V.: Fuzzy Horn logic II: implicationally defined classes (submitted)Google Scholar
  11. 11.
    Birkhoff, G.: On the structure of abstract algebras. Proc. Camb. Philos. Soc. 31, 433–454 (1935)MATHCrossRefGoogle Scholar
  12. 12.
    Bloom, S.L., Wright, J.B.: Finitary quasi varieties. J. Pure and Appl. Algebra 25, 121–154 (1982)MATHMathSciNetGoogle Scholar
  13. 13.
    Burris, S., Sankappanavar, H. P.: A Course in Universal Algebra. Springer-Verlag, New York, 1981Google Scholar
  14. 14.
    Chang, C.C., Keisler, H.J.: Continuous Model Theory. Princeton University Press, Princeton, NJ, 1966Google Scholar
  15. 15.
    Chang, C.C., Keisler, H.J.: Model Theory. North–Holland, Amsterdam, 1973Google Scholar
  16. 16.
    Feynman, R.P., Leighton, R.B., Sands, M.: The Feynman Lectures on Physics. Addison Wesley, Reading, MA, 1963Google Scholar
  17. 17.
    Fujiwara, T.: On the construction of the least universal Horn class containing a given class. Osaka J. Math. 8, 425–436 (1971)MATHMathSciNetGoogle Scholar
  18. 18.
    Goguen, J.A.: L-fuzzy sets. J. Math. Anal. Appl. 18, 145–174 (1967)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Goguen, J.A.: The logic of inexact concepts. Synthese 18, 325–373 (1968–9)Google Scholar
  20. 20.
    Gottwald, S.: A Treatise on Many-Valued Logics. Research Studies Press, Baldock, Hertfordshire, England, 2001Google Scholar
  21. 21.
    Hájek, P.: Basic fuzzy logic and BL-algebras. Soft Computing 2, 124–128 (1998)Google Scholar
  22. 22.
    Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht, 1998Google Scholar
  23. 23.
    Hájek, P.: On very true. Fuzzy Sets and Systems 124, 329–333 (2001)MATHMathSciNetGoogle Scholar
  24. 24.
    Hájek, P.: Monadic fuzzy predicate logic. PreprintGoogle Scholar
  25. 25.
    Höhle, U.: On the fundamentals of fuzzy set theory. J. Math. Anal. Appl. 201, 786–826 (1996)MATHMathSciNetGoogle Scholar
  26. 26.
    Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer, Dordrecht, 2000Google Scholar
  27. 27.
    Ling, C.H.: Representation of associative functions. Publ. Math. Debrecen 12, 189–212 (1965)MathSciNetGoogle Scholar
  28. 28.
    Mostert, P.S., Shields, A.L.: On the structure of semigroups on a compact manifold with boundary. Ann. Math. 65, 117–143 (1957)MATHMathSciNetGoogle Scholar
  29. 29.
    Novák, V., Perfilieva, I., Močkoř, J.: Mathematical Principles of Fuzzy Logic. Kluwer, Boston, 1999Google Scholar
  30. 30.
    Palasińska, K., Pigozzi, G.: Gentzen-style axiomatization in equational logic. Algebra Universalis 34, 128–143 (1995)MathSciNetMATHGoogle Scholar
  31. 31.
    Pavelka, J.: On fuzzy logic I, II, III. Z. Math. Logik Grundlagen Math. 25, 45–52, 119–134, 447–464 (1979)MATHMathSciNetGoogle Scholar
  32. 32.
    Selman, A.: Completeness of calculii for axiomatically defined classes of algebras. Algebra Universalis 2, 20–32 (1972)MATHMathSciNetCrossRefGoogle Scholar
  33. 33.
    Takeuti, G., Titani, S.: Globalization of intuitionistic set theory. Annals of Pure and Applied Logic 33, 195–211 (1987)CrossRefMATHMathSciNetGoogle Scholar
  34. 34.
    Vojtáš, P.: Fuzzy logic programming. Fuzzy Sets and Systems 124 (3), 361–370 (2001)Google Scholar
  35. 35.
    Vychodil, V.: Direct limits and reduced products of algebras with fuzzy equalities (submitted)Google Scholar
  36. 36.
    Vychodil, V.: Cut and weakening in fuzzy Horn logic (submitted)Google Scholar
  37. 37.
    Vychodil, V.: Extended fuzzy equational logic (submitted)Google Scholar
  38. 38.
    Wechler, W.: Universal Algebra for Computer Scientists. Springer-Verlag, Berlin Heidelberg, 1992Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  1. 1.Deptartment of Computer SciencePalacký UniversityOlomoucCzech Republic

Personalised recommendations