Archive for Mathematical Logic

, Volume 45, Issue 1, pp 97–112 | Cite as

The Chang-Łoś-Suszko theorem in a topological setting

  • Paul Bankston


The Chang-Łoś-Suszko theorem of first-order model theory characterizes universal-existential classes of models as just those elementary classes that are closed under unions of chains. This theorem can then be used to equate two model-theoretic closure conditions for elementary classes; namely unions of chains and existential substructures. In the present paper we prove a topological analogue and indicate some applications.

Key words or phrases:

Co-elementary hierarchy Co-existential mapping Ultracopower Ultracoproduct Compactum Continuum Covering dimension Multicoherence degree Chang-Łoś-Suszko theorem 

Mathematics Subject Classification (2000)

Primary 03C20 54B35 54C10 54D30 Secondary 03C52 06D05 54D35 54F15 54F45 54F55 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bankston, P.: Reduced coproducts of compact Hausdorff spaces. J. Symbolic Logic 52, 404–424 (1987)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Bankston, P.: Model-theoretic characterizations of arcs and simple closed curves. Proc. A. M. S. 104, 898–904 (1988)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Bankston, P.: Taxonomies of model-theoretically defined topological properties. J. Symbolic Logic 55, 589–603 (1990)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Bankston, P.: A hierarchy of maps between compacta. J. Symbolic Logic 64, 1628–1644 (1999)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Bankston, P.: Some applications of the ultrapower theorem to the theory of compacta. Appl. Categorical Struct. 8, 45–66 (2000)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Bankston, P.: Continua and the co-elementary hierarchy of maps. Topol. Proc. 25, 45–62 (2000)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Bellamy, D.: Continuous mappings between continua. Topology Conference, Greensboro, N. C., 1979, Guilford College, Greensboro, NC, 1980, pp. 101–111Google Scholar
  8. 8.
    Chang, C.C., Keisler, H.J.: Model Theory. Third ed., North Holland, Amsterdam, 1990Google Scholar
  9. 9.
    Engelking, R.: Outline of General Topology. North Holland, Amsterdam, 1968Google Scholar
  10. 10.
    Gurevič, R.: On ultracoproducts of compact Hausdorff spaces. J. Symbolic Logic 53, 294–300 (1988)MathSciNetGoogle Scholar
  11. 11.
    Hart, K.P.: The Čech-Stone compactification of the Real line. In: Recent Progress in General Topology, M. Hušek, J. van Mill, (eds.), Elsevier Science Publishers, 1992, pp. 318–351Google Scholar
  12. 12.
    Hart, K.P., van Mill, J., Pol, R.: Remarks on hereditarily indecomposable continua. Topol. Proc. 25, 179–206 (2000)zbMATHMathSciNetGoogle Scholar
  13. 13.
    Hocking, J.G., Young, G.S.: Topology. Addison-Wesley, Reading, MA, 1961Google Scholar
  14. 14.
    Mioduszewski, J.: On composants of βR-R. In: Topology and Measure I, Part 2 (Zinnowitz, 1974), J. Flachsmeyer, Z. Frolík, F. Terpe, (eds.), Ernst-Moritz-Arndt-Universität zu Greifswald, pp. 257–283Google Scholar
  15. 15.
    Nadler, S.B.: Multicoherence techniques applied to inverse limits. Trans. A. M. S. 157, 227–234 (1971)zbMATHMathSciNetGoogle Scholar
  16. 16.
    Nadler, S.B.: Continuum Theory, An Introduction. Marcel Dekker, New York, 1992Google Scholar
  17. 17.
    Nagami, K.: Dimension Theory. Academic Press, New York, 1970Google Scholar
  18. 18.
    Simmons, H.: Existentially closed structures. J. Symbolic Logic 37, 293–310 (1972)zbMATHMathSciNetGoogle Scholar
  19. 19.
    Smith, M.: β (X-{x}) for X not locally connected. Topol. Appl. 26, 239–250 (1987)zbMATHGoogle Scholar
  20. 20.
    Smith, M.: Layers of components of β([0,1]× N) are indecomposable. Proc. A.M.S. 114, 1151–1156 (1992)zbMATHGoogle Scholar
  21. 21.
    Zhu, J.-P.: On indecomposable subcontinua of β[0,∞) - [0,∞). In: Proceedings of General Topology and Geometric Topology Symposium (Tsukuba, 1990), 45 Topology Appl., 1992, pp. 261–274Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  1. 1.Department of Mathematics, Statistics and Computer ScienceMarquette UniversityMilwaukeeUSA

Personalised recommendations