Archive for Mathematical Logic

, Volume 43, Issue 3, pp 399–414 | Cite as

Embeddings into the Medvedev and Muchnik lattices of Π01 classes



Let w and M be the countable distributive lattices of Muchnik and Medvedev degrees of non-empty Π10 subsets of 2ω, under Muchnik and Medvedev reducibility, respectively. We show that all countable distributive lattices are lattice-embeddable below any non-zero element of w. We show that many countable distributive lattices are lattice-embeddable below any non-zero element of M.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Balbes, R.: Projective and injective distributive lattices. Pacific J. Math. 21, 405–420 (1967)MATHGoogle Scholar
  2. 2.
    Binns, S.E.: The Medvedev and Muchnik Lattices of Π0 1 Classes. PhD Thesis Pennsylvania State University, 2003, V+80 pagesGoogle Scholar
  3. 3.
    Binns, S.E.: A splitting theorem for the Medvedev and Muchnik lattices. Math. Logic Quarterly 49, 327–335 (2003)CrossRefMATHGoogle Scholar
  4. 4.
    Cenzer, D., Hinman, P.G.: Density of the Medvedev lattice of Π0 1 classes. Archive for Math. Logic 43, 583–600 (2003)CrossRefGoogle Scholar
  5. 5.
    COMP-THY e-mail list. html, September 1995 to the presentGoogle Scholar
  6. 6.
    Cooper, S.B., Slaman, T.A., Wainer, S.S., editors: Computability, Enumerability, Unsolvability: Directions in Recursion Theory. Number 224 in London Mathematical Society Lecture Notes. Cambridge University Press, 1996, VII+347 pagesGoogle Scholar
  7. 7.
    FOM e-mail list., 1997 to the presentGoogle Scholar
  8. 8.
    Grätzer, G.A.: General Lattice Theory. Birkhäuser-Verlag, 2nd edition, 1998, XIX+663 pagesGoogle Scholar
  9. 9.
    Jockusch, C.G., Jr., Soare, R.I.: Π0 1 classes and degrees of theories. Trans. Am. Math. Soc. 173, 35–56 (1972)Google Scholar
  10. 10.
    McKenzie, R., McNulty, G.F., Taylor, W.F.: Algebras, Lattices, Varieties. Vol. 1. Wadsworth and Brooks/Cole, 1987, XI+361 pagesGoogle Scholar
  11. 11.
    Medvedev, Y.T.: Degrees of difficulty of mass problems. Doklady Akademii Nauk SSSR, n.s. 104, 501–504 (1955), In RussianGoogle Scholar
  12. 12.
    Muchnik, A.A.: On strong and weak reducibilities of algorithmic problems. Sibirskii Matematicheskii Zhurnal 4, 1328–1341 (1963), In RussianMATHGoogle Scholar
  13. 13.
    Rogers, H., Jr.: Theory of Recursive Functions and Effective Computability. McGraw-Hill, 1967, XIX+482 pagesGoogle Scholar
  14. 14.
    Sikorski, R.: Boolean Algebras. Springer-Verlag, 3rd edition, 1969, X+237 pagesGoogle Scholar
  15. 15.
    Simpson, S.G., editor: Reverse Mathematics 2001. Lecture Notes in Logic. Association for Symbolic Logic, 2004, to appearGoogle Scholar
  16. 16.
    Simpson, S.G.: Π0 1 sets and models of WKL 0. In: [15]. Preprint, April 2000, 29 pages, to appearGoogle Scholar
  17. 17.
    Simpson, S.G.: FOM: natural r.e. degrees; Pi01 classes. FOM e-mail list [7], 1999Google Scholar
  18. 18.
    Simpson, S.G.: Medvedev degrees of nonempty Pi0 1 subsets of 2omega. COMP-THY e-mail list [5], 2000Google Scholar
  19. 19.
    Simpson, S.G.: Some Muchnik degrees of Π0 1 subsets of 2ω, 2001. Preprint, 7 pages, in preparationGoogle Scholar
  20. 20.
    Simpson, S.G., Slaman, T.A.: Medvedev degrees of Π0 1 subsets of 2ω, 2001. Preprint, 4 pages, in preparationGoogle Scholar
  21. 21.
    Soare, R.I.: Recursively Enumerable Sets and Degrees. Perspectives in Mathematical Logic. Springer-Verlag, 1987, XVIII+437 pagesGoogle Scholar
  22. 22.
    Sorbi, A.: The Medvedev lattice of degrees of difficulty. In: [6], 1996, pp. 289–312Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  1. 1.Department of MathematicsPennsylvania State UniversityUSA

Personalised recommendations