Archive for Mathematical Logic

, Volume 42, Issue 8, pp 769–779 | Cite as

Strongly meager sets of size continuum

Article

Abstract.

We will construct several models where there are no strongly meager sets of size 2ℵ0.

Keywords

Strongly meager Preservation Forcing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bartoszynski, T., Judah, H.: Set Theory: on the structure of the real line. A.K. Peters, 1995Google Scholar
  2. 2.
    Bartoszynski, T., Shelah, S.: Strongly meager sets do not form an ideal. J. Math. Logic 1, 1–34 (2001)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Borel, E.: Sur la classification des ensembles de mesure nulle. Bulletin de la Societe Mathematique de France 47, 97–125 (1919)MATHGoogle Scholar
  4. 4.
    Carlson, T.J.: Strong measure zero and strongly meager sets. Proc. Amer. Math. Soc. 118(2), 577–586 (1993)MATHGoogle Scholar
  5. 5.
    Eisworth, T.: Contributions to the theory of proper forcing. Ph.D. thesis, 1994Google Scholar
  6. 6.
    Erdos, P., Kunen, K., Mauldin, R.D.: Some additive properties of sets of real numbers. Fundamenta Mathematicae 113(3), 187–199 (1981)Google Scholar
  7. 7.
    Galvin, F., Mycielski, J., Solovay, R.: Strong measure zero sets. Notices Amer. Math. Soc. pages A–280, 1973Google Scholar
  8. 8.
    Goldstern, M.: Tools for your forcing constructions. In Haim Judah, editor, Set theory of the reals, Israel Mathematical Conference Proceedings, pages 305–360. Bar Ilan University, 1992Google Scholar
  9. 9.
    Goldstern, M., Judah, H., Shelah., S.: Strong measure zero sets without Cohen reals. J. Symbolic Logic 58(4), 1323–1341 (1993)MATHGoogle Scholar
  10. 10.
    Kysiak, M.: Master’s Thesis, Warsaw University. In Polish, 2000Google Scholar
  11. 11.
    Nowik, A., Weiss, T.: Strongly meager sets of real numbers and tree forcing notions. Proc. Amer. Math. Soc. 130(4), 1183–1187 (2002)CrossRefMATHGoogle Scholar
  12. 12.
    Pawlikowski, J.: Why Solovay real produces Cohen real. J. Symbolic Logic 51(4), 957–968 (1986)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  1. 1.Department of Mathematics and Computer ScienceBoise State UniversityBoiseUSA
  2. 2.Department of MathematicsHebrew UniversityJerusalemIsrael
  3. 3.Department of MathematicsRutgers UniversityNew BrunswickUSA

Personalised recommendations