Archive for Mathematical Logic

, Volume 42, Issue 7, pp 711–716 | Cite as

On the polynomial-space completeness of intuitionistic propositional logic



We present an alternative, purely semantical and relatively simple, proof of the Statman's result that both intuitionistic propositional logic and its implicational fragment are PSPACE-complete.


Intuitionistic logic Non-classical logics Decision problem Polynomial-space Kripke models Logical connectives 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    De~Jongh, D.H.J., Veltman, F.: Intensional Logic. Lecture notes. Philosophy Department, University of Amsterdam, Amsterdam, 1988Google Scholar
  2. 2.
    Ladner, R.: The computational complexity of provability in systems of modal logic. SIAM Journal of Computing 6(3), 467–480 (1977)MATHGoogle Scholar
  3. 3.
    Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, 1994Google Scholar
  4. 4.
    Spaan, E.: Complexity of modal logics. Dissertation, Faculty of mathematics and informatics, University of Amsterdam, Amsterdam, 1993Google Scholar
  5. 5.
    Statman, R.: Intuitionistic propositional logic is polynomial-space complete. Theoretical Comput. Sci. 9, 67–72 (1979)CrossRefMathSciNetMATHGoogle Scholar
  6. 6.
    Takeuti, G.: Proof Theory. North-Holland, Amsterdam, 1975Google Scholar
  7. 7.
    Van Dalen, D.: Intuitionistic logic. In: D. Gabbay, F. Guenthner eds, Handbook of Philosophical Logic, number~164–167 in Synthese Library, Chapter III.4, pp. 225–340. Kluwer, Dordrecht, 1986Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  1. 1.Philosophical Faculty of Charles UniversityPraha 1Czech Republic

Personalised recommendations