Archive for Mathematical Logic

, Volume 42, Issue 7, pp 711–716 | Cite as

On the polynomial-space completeness of intuitionistic propositional logic

  • Vítězslav ŠvejdarEmail author


We present an alternative, purely semantical and relatively simple, proof of the Statman's result that both intuitionistic propositional logic and its implicational fragment are PSPACE-complete.


Intuitionistic logic Non-classical logics Decision problem Polynomial-space Kripke models Logical connectives 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    De~Jongh, D.H.J., Veltman, F.: Intensional Logic. Lecture notes. Philosophy Department, University of Amsterdam, Amsterdam, 1988Google Scholar
  2. 2.
    Ladner, R.: The computational complexity of provability in systems of modal logic. SIAM Journal of Computing 6(3), 467–480 (1977)zbMATHGoogle Scholar
  3. 3.
    Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, 1994Google Scholar
  4. 4.
    Spaan, E.: Complexity of modal logics. Dissertation, Faculty of mathematics and informatics, University of Amsterdam, Amsterdam, 1993Google Scholar
  5. 5.
    Statman, R.: Intuitionistic propositional logic is polynomial-space complete. Theoretical Comput. Sci. 9, 67–72 (1979)CrossRefMathSciNetzbMATHGoogle Scholar
  6. 6.
    Takeuti, G.: Proof Theory. North-Holland, Amsterdam, 1975Google Scholar
  7. 7.
    Van Dalen, D.: Intuitionistic logic. In: D. Gabbay, F. Guenthner eds, Handbook of Philosophical Logic, number~164–167 in Synthese Library, Chapter III.4, pp. 225–340. Kluwer, Dordrecht, 1986Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  1. 1.Philosophical Faculty of Charles UniversityPraha 1Czech Republic

Personalised recommendations