Journal of Population Economics

, Volume 23, Issue 4, pp 1371–1389 | Cite as

Gibrat’s law for countries

Original Paper

Abstract

A reassessment of Gibrat’s Law in the context of country size is carried out in this paper. In addition, how similarly population is distributed in cities and countries is analyzed from a temporal perspective. Although evidence of Gibrat’s Law is found, it is weaker than that previously established in Rose (J Money Credit Bank 38(8):2225–2246, 2006). This is due to the methodology applied and is especially appreciable in very small countries. Nonetheless, we observe that the population growth process in countries is similar to that of cities. As a result, the similarities between how the population is distributed in these two geographical categories have increased over time.

Keywords

Girat’s law Country size 

JEL Classification

C12 F00 R12 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alesina A, Spaolare E, Waczierg R (2005) Trade, growth and the size of countries. In: Aghion P, Durlauf SN (eds) Handbook of economic growth 1B. North-Holland Elsevier Science, Amsterdam, pp 1499–1542CrossRefGoogle Scholar
  2. Anderson G, Ge Y (2005) The size distribution of Chinese cities. Reg Sci Urban Econ 35(6):756–776CrossRefGoogle Scholar
  3. Banerjee A, Massimiliano M, Osbat C (2005) Testing for PPP: should we use panel methods? Empir Econ 30(1):77–91CrossRefGoogle Scholar
  4. Black D, Henderson HV (2003) Urban evolution in the USA. J Econ Geogr 3(4):343–372CrossRefGoogle Scholar
  5. Bosker EM, Brakman S, Garretsen H, Schramm M (2008) A century of shocks: the evolution of the German city size distribution 1925–1999. Reg Sci Urban Econ 38(4):330–347CrossRefGoogle Scholar
  6. Cheshire PC, Magrini S (2006) Population growth in European cities: weather matters—but only nationally. Reg Stud 40(1):23–37CrossRefGoogle Scholar
  7. Choi I (2001) Unit root tests for panel data. J Int Money Financ 20(2):249–272CrossRefGoogle Scholar
  8. Clark JS, Stabler JC (1991) Gibrat’s law and the growth of Canadian cities. Urban Stud 28(4):635–639CrossRefGoogle Scholar
  9. Córdoba JC (2008) A generalized Gibrat’s Law for cities. Int Econ Rev 49(4):1463–1468Google Scholar
  10. Davis DR, Weinstein DE (2002) Bones, bombs, and break points: the geography of economic activity. Am Econ Rev 92(5):1269–1289CrossRefGoogle Scholar
  11. Di Guilmi C, Gaffeo E, Gallegati M (2003) Power law scaling in the world income distribution. Econ Bull 15(6):1–7Google Scholar
  12. Eaton J, Eckstein Z (1997) Cities and growth: theory and evidence from France and Japan. Reg Sci Urban Econ 27(4–5):443–474CrossRefGoogle Scholar
  13. Eeckhout J (2004) Gibrat’s law for (all) cities. Am Econ Rev 94(5):1429–1451CrossRefGoogle Scholar
  14. Eeckhout J (2009) Gibrat’s Law for (all) Cities: reply. Am Econ Rev (in press)Google Scholar
  15. Ehrlich I, Lui F (1997) The problem of population and growth: a review of the literature from malthus to contemporary models of endogenous population and endogenous growth. J Econ Dyn Control 21(1):205–242CrossRefGoogle Scholar
  16. Furceri D (2008) Zipf’s Law and world income distribution. Appl Econ Lett 15(12):921–923CrossRefGoogle Scholar
  17. Gabaix X (1999) Zipf’s law for cities: an explanation. Q J Econ 114(3):739–767CrossRefGoogle Scholar
  18. Gabaix X, Iaonnides YM (2004) The evolution of city size distributions. In: Henderson JV, Thisse, JF (eds) Handbook of urban and regional economics 4A. North-Holland Elsevier Science, Amsterdam, pp 2341–2378Google Scholar
  19. Gabaix X, Ibragimov R (2007) Rank-1/2: a simple way to improve OLS estimation of tail exponents. NBER technical working paper no 342Google Scholar
  20. Gibrat R (1931) Les inégalités économiques. Librairie du Recueil Sirey, ParisGoogle Scholar
  21. Guérin-Pace F (1995) Rank-Size distribution and the process of urban growth. Urban Stud 32(3):551–562CrossRefGoogle Scholar
  22. Henderson JV, Wang HG (2007) Urbanization and city growth: the role of institutions. Reg Sci Urban Econ 37(3):283–313CrossRefGoogle Scholar
  23. Im K, Pesaran MH, Shin Y (2003) Testing for unit roots in heterogeneous panels. J Econom 115(1):53–74CrossRefGoogle Scholar
  24. Ioannides YM, Overman HG (2003) Zipf’s law for cities: an empirical examination. Reg Sci Urban Econ 33(2):127–137CrossRefGoogle Scholar
  25. Jaeger K, Kuhle W (2009) The optimum growth rate for population reconsidered. J Popul Econ 22(1):23–41CrossRefGoogle Scholar
  26. Lanaspa L, Pueyo F, Sanz F (2003) The evolution of Spanish urban structure during the twentieth century. Urban Stud 40(3):567–580CrossRefGoogle Scholar
  27. Ng S, Perron P (2001) Lag length selection and the construction of unit root tests with good size and power. Econometrica 69(6):1519–1554CrossRefGoogle Scholar
  28. Pesaran MH (2004) General diagnostic tests for cross section dependence in panels. CESifo working paper series no 1229Google Scholar
  29. Pesaran MH (2007) A simple panel unit root test in the presence of cross-section dependence. J Appl Econ 22(2):265–312CrossRefGoogle Scholar
  30. Petrakos GP, Mardakis P, Caraveli H (2000) Recent developments in the Greek system of urban centres. Environ Plann B Plann Des 27(2):169–181CrossRefGoogle Scholar
  31. Quah DT (1993) Empirical cross-section dynamics in economic growth. Eur Econ Rev 37(2–3):426–434CrossRefGoogle Scholar
  32. Resende M (2004) Gibrat’s law and the growth of cities in Brazil: a panel data investigation. Urban Stud 41(8):1537–1549CrossRefGoogle Scholar
  33. Rose AK (2006) Cities and countries. J Money Credit Bank 38(8):2225–2246CrossRefGoogle Scholar
  34. Soo KT (2005) Zipf’s law for cities: a cross-country investigation. Reg Sci Urban Econ 35(3):239–263CrossRefGoogle Scholar
  35. Soo KT (2007) Zipf’s law and urban growth in malaysia. Urban Stud 44(1):1–14CrossRefGoogle Scholar
  36. Zipf GK (1949) Human behaviour and the principle of least effort: an introduction to human ecology. Addison-Wesley, CambridgeGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Departamento de Análisis Económico, Facultad de Ciencias Económicas y EmpresarialesUniversidad de ZaragozaZaragozaSpain

Personalised recommendations