, Volume 33, Issue 4, pp 621–629 | Cite as

EEG efficient classification of imagined right and left hand movement using RBF kernel SVM and the joint CWT_PCA

  • Rihab BoussetaEmail author
  • Salma Tayeb
  • Issam El Ouakouak
  • Mourad Gharbi
  • Fakhita Regragui
  • Majid Mohamed Himmi
Student Forum


Brain–machine interfaces are systems that allow the control of a device such as a robot arm through a person’s brain activity; such devices can be used by disabled persons to enhance their life and improve their independence. This paper is an extended version of a work that aims at discriminating between left and right imagined hand movements using a support vector machine (SVM) classifier to control a robot arm in order to help a person to find an object in the environment. The main focus here is to search for the best features that describe efficiently the electroencephalogram data during such imagined gestures by comparing two feature extraction methods, namely the continuous wavelet transform (CWT) and the empirical modal decomposition (EMD), combined with the principal component analysis (PCA) that were fed through a linear and radial basis function (RBF) kernel SVM classifier. The experimental results showed high performance achieving an average accuracy across all the subjects of 92.75% with an RBF kernel SVM classifier using CWT and PCA compared to 80.25% accuracy obtained with EMD and PCA. The proposed system has been implemented and tested using data collected from five male subjects and it enabled the control of the robot arm in the right and the left direction.


Brain–machine interface EEG Continuous wavelet transform Principal component analysis Support vector machine 


  1. Alomari HM, Samaha A, AlKamha K (2013) Automated classification of L/R hand movement EEG signals using advanced feature extraction and machine learning. Int J Adv Comput Sci Appl 4:6Google Scholar
  2. Bashashati A, Fatourechi M, Ward RK, Birch GE (2007) A survey of signal processing algorithms in brain–computer interfaces based on electrical brain signals. J Neural Eng 4:R32–R57CrossRefGoogle Scholar
  3. Berger H (1929) Über das Elektrenkephalogramm des Menschen. Arch Psychiatr Nervenkr 87:527–570CrossRefGoogle Scholar
  4. Bousseta R, Tayeb S, El Ouakouak I et al (2016) EEG efficient classification of imagined hand movement using RBF kernel SVM. In: SITA 2016—11th international conference on intelligent systems: theories and applicationsGoogle Scholar
  5. Cexus J-C (2005) Analyse des signaux non-stationnaires par transformation de Huang, Opérateur deTeager-Kaiser, et Transformation de Huang-Teager (THT)Google Scholar
  6. Chang C-C, Lin C-J (2011) LIBSVM. ACM Trans Intell Syst Technol 2:1–27CrossRefGoogle Scholar
  7. Clynes M, Kline N (1960) Cyborgs and Space. Astronautics 26–27, 74–75Google Scholar
  8. Decety J (1996) Do imagined and executed actions share the same neural substrate? Brain Res Cogn Brain Res 3:87–93CrossRefGoogle Scholar
  9. Dharmasena S, Lalitharathne K, Dissanayake K et al (2013) Online classification of imagined hand movement using a consumer grade EEG device. In: 2013 IEEE 8th international conference on industrial and information systems. IEEE, pp 537–541Google Scholar
  10. Flandrin P, Gonçalvès P (2003) Sur la décomposition modale empirique. In: GRETSI. pp 149–152Google Scholar
  11. Flórez F, Azorín JM, Iáñez E et al (2011) Development of a low-cost SVM-based spontaneous brain–computer interface. In: Madani K, Kacprzyk J, Filipe J (eds) {NCTA} 2011—proceedings of the international conference on neural computation theory and applications [part of the international joint conference on computational intelligence {IJCCI} 2011], Paris, France, 24–26 October, 2011. SciTePress, pp 415–421Google Scholar
  12. Guger C, Harkam W, Hertnaes C, Pfurtscheller G (1999) Prosthetic control by an EEG-based brain- computer interface (BCI). In: AAATE 5th European conference for the advancement of assistive technology, pp 2–7Google Scholar
  13. Hortal E, Planelles D, Costa A et al (2015) SVM-based brain–machine Interface for controlling a robot arm through four mental tasks. Neurocomputing 151:116–121CrossRefGoogle Scholar
  14. Hsu W-Y (2013) Independent component analysis and multiresolution asymmetry ratio for brain–computer interface. Clin EEG Neurosci 44:105–111CrossRefGoogle Scholar
  15. Hsu C-W, Chang C-C, Lin C-J (2003) A practical guide to support vector classification. Technical report, Department of Computer Science, National Taiwan UniversityGoogle Scholar
  16. Huang NE, Shen Z, Long SR et al (1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc R Soc A Math Phys Eng Sci 454:903–995MathSciNetCrossRefGoogle Scholar
  17. Kübler A, Mushahwar VK, Hochberg LR, Donoghue JP (2006) BCI Meeting 2005—workshop on clinical issues and applications. IEEE Trans Neural Syst Rehabil Eng 14:131–134CrossRefGoogle Scholar
  18. Lécuyer A, Lotte F, Reilly RB, et al (2008) Brain-computer interfaces, virtual reality, and videogames. Computer (Long Beach Calif) 41:66–72. doi: 10.1109/MC.2008.410 CrossRefGoogle Scholar
  19. Leeb R, Pfurtscheller G (2004) Walking through a virtual city by thought. In: The 26th annual international conference of the IEEE Engineering in Medicine and Biology Society. IEEE, pp 4503–4506Google Scholar
  20. Lotte F, Congedo M, Lécuyer A et al (2007) A review of classification algorithms for EEG-based brain–computer interfaces. J Neural Eng 4:R1–R13CrossRefGoogle Scholar
  21. Mason SG, Birch GE (2003) A general framework for brain–computer interface design. IEEE Trans Neural Syst Rehabil Eng 11:70–85CrossRefGoogle Scholar
  22. Pang CCC, Upton ARM, Shine G, Kamath MV (2003) A comparison of algorithms for detection of spikes in the electroencephalogram. IEEE Trans Biomed Eng 50:521–526. doi: 10.1109/TBME.2003.809479 CrossRefGoogle Scholar
  23. Pfurtscheller G, Neuper C (2001) Motor imagery and direct brain–computer communication. Proc IEEE 89:1123–1134CrossRefGoogle Scholar
  24. Pfurtscheller G, Neuper C, Schlogl A, Lugger K (1998) Separability of EEG signals recorded during right and left motor imagery using adaptive autoregressive parameters. IEEE Trans Rehabil Eng 6:316–325CrossRefGoogle Scholar
  25. Pfurtscheller G, Leeb R, Keinrath C et al (2006) Walking from thought. Brain Res 1071:145–152CrossRefGoogle Scholar
  26. Tayeb S, Mahmoudi A, Regragui F, Himmi MM (2014) Efficient detection of P300 using kernel PCA and support vector machine. In: 2014 second world conference on complex systems (WCCS). IEEE, pp 17–22Google Scholar
  27. Vidal JJ (1973) Toward direct brain–computer communication. Annu Rev Biophys Bioeng 2:157–180CrossRefGoogle Scholar
  28. Wang F, Kim K, Wen S et al (2012) EEG based automatic left-right hand movement classification. In: 2012 24th Chinese control and decision conference (CCDC). IEEE, pp 1469–1472Google Scholar
  29. Wolpaw JR, Birbaumer N, Mcfarland DJ et al (2002) Brain–computer interfaces for communication and control. Clin Neurophysiol 113:767–791CrossRefGoogle Scholar
  30. Wolpaw JR, Loeb GE, Allison BZ et al (2006) BCI meeting 2005–workshop on signals and recording methods. IEEE Trans Neural Syst Rehabil Eng 14:138–141CrossRefGoogle Scholar
  31. Wu J, Wang J, Liu L (2006) Kernel-based method for automated walking patterns recognition using kinematics data. Springer, Berlin, pp 560–569Google Scholar

Copyright information

© Springer-Verlag London Ltd. 2017

Authors and Affiliations

  • Rihab Bousseta
    • 1
    Email author
  • Salma Tayeb
    • 1
  • Issam El Ouakouak
    • 1
  • Mourad Gharbi
    • 1
  • Fakhita Regragui
    • 1
  • Majid Mohamed Himmi
    • 1
  1. 1.LIMIARF, Faculty of Sciences-RabatUniversity Mohammed-VRabatMorocco

Personalised recommendations