Advertisement

AI & SOCIETY

, Volume 32, Issue 3, pp 401–419 | Cite as

Understanding the social impact of ICN: between myth and reality

  • G. Piro
  • S. Signorello
  • M. R. Palattella
  • L. A. GriecoEmail author
  • G. Boggia
  • T. Engel
Open Forum

Abstract

The information-centric networking (ICN) paradigm is attracting more and more interest from the research community due to its peculiarities that make it one of the best candidates for constructing the future Internet. For this reason, there are many papers in literature that study how to transform ICN principles in reality in order to magnify its relevance for the society. In order to provide a solid summary of the state of the art, the present contribution tries to summarize the main findings related to this research field. In particular, an overview on the most important ICN architectures, their main aspects, common networking approaches, and differences is provided. Moreover, the work carried out in standardization bodies, with particular attention to the list of baseline scenarios defined in this context, is illustrated. Also the main international projects that are trying to integrate ICN networking primitives in pioneering use cases are presented, describing proposed architectures and related challenges for enabling information-centric primitives in current network infrastructures. Finally, the work highlights design principles and core components to build ICN-enabled network devices.

Keywords

Future internet Information-centric networking Software-defined networking Hardware design 

Notes

Acknowledgments

This work was partially supported by the BONVOYAGE project, which received funding from the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No 635867 and by the CoSDN project, INTER/POLLUX/12/4434480, and the IDSECOM project, INTER/POLLUX/13/6450335, both funded by the Fonds National de la Recherche Luxembourg.

References

  1. AbdAllah EG, Hassanein HS, Zulkernine M (2015) A survey of security attacks in information-centric networking. IEEE Commun Surv Tutor 17(3):1441–1454 (Third Quarter)Google Scholar
  2. Afanasyev A, Shi J, Wang L, Zhang B, Zhang L (2015) Packet fragmentation in NDN: why NDN uses hop-by-hop fragmentation. Technical report NDN-0032, rev. 1, May, 2015Google Scholar
  3. Ahlgren B, Dannewitz C, Imbrenda C, Kutscher D, Ohlman B (2012) A survey of information-centric networking. IEEE Commun Mag 50(7):26–36CrossRefGoogle Scholar
  4. Anand A, Muthukrishnan C, Akella A, Ramjee R (2009) Redundancy in network traffic: findings and implications. ACM SIGMETRICS Perform Eval Rev 37(1):37–48Google Scholar
  5. Arianfar S, Nikkander P, Ott J (2010) On content-centric router design and implications. In: Proceedings of ACM workshop on rearchitecting the internet (ReArch), Philadelphia, USA, November 2010Google Scholar
  6. Arumaithurai M, Chen J, Monticelli E, Fu X, Ramakrishnan KK (2014) Exploiting ICN for flexible management of software-defined networks. In: Proceedings of ACM conference on information-centric networking, Paris, France September, 2014Google Scholar
  7. Banjar A, Pupatwibul P, Sabbagh A, Braun R (2014) Using an ICN approach to support multiple controllers in OpenFlow. Int J Electr Comput Sci 14(2):1–6Google Scholar
  8. BGP Analysis Reports. http://bgp.potaroo.net/index-bgp.html. Accessed 07 Nov 2015
  9. Blefari-Melazzi N, Detti A, Mazza G, Morabito G, Salsano S, Veltri L (2012) An Openflow-based testbed for information centric networking. In: Proceedings of IEEE future network and mobile summit (FutureNetw), Berlin, Germany, 2012Google Scholar
  10. Blefari-Melazzi N, Detti A, Pomposini M, Salsano S (2012) Route discovery and caching: a way to improve the scalability of information-centric networking. In: Proceedings of IEEE global communications conference (GLOBECOM), Anaheim, CA, December 2012Google Scholar
  11. Blefari-Melazzi N, Detti A, Arumaithurai M, Ramakrishnan KK (2014) Internames: a name-to-name principle for the future Internet. In: Proceedings of international workshop on quality, reliability, and security in information-centric networking (Q-ICN), Rhodes island, Greece, August, 2014Google Scholar
  12. Campolo C, Amadeo M, Molinaro A (2012) CRoWN: content-centric networking in vehicular ad hoc networks. IEEE Commun Lett 16(9):1380–1383CrossRefGoogle Scholar
  13. Chanda A, Westphal C, Raychaudhuri D (2013) Content based traffic engineering in software defined information centric networks. In: Proceedings of IEEE international workshop on emerging design choices in name-oriented networking (NOMEN), Turin, Italy, April, 2013Google Scholar
  14. Chang D, Kwak M, Choi N, Kwon T (2014) C-flow: an efficient content delivery framework with OpenFlow. In: Proceedings of IEEE international conference on information networking (ICOIN), Phuket, Thailand, February, 2014Google Scholar
  15. Dai H, Liu B, Chen Y, Wang Y (2012) On pending interest table in named data networking. In: Proceedings of ACM/IEEE symposium on architectures for networking and communications systems (ANCS), Austin, Texas, USA, October, 2012Google Scholar
  16. Daily Estimated Size of the World Wide Web. http://www.worldwidewebsize.com/ Accessed 07 Nov 2015
  17. Detti A, Salsano S, Blefari-Melazzi N (2013) IP protocol suite extensions to support CONET information centric networking. Internet-Draft, June, 2013Google Scholar
  18. EPSRC PAL Project. http://palproject.org.uk
  19. Fang C, Yu FR, Huang T, Liu J, Liu Y (2014) A survey of energy-efficient caching in information-centric networking. IEEE Commun Mag 52(11):122–129CrossRefGoogle Scholar
  20. Fang C, Yu R, Huang T, Liu J, Liu Y (2015) A survey of green information-centric networking: research issues and challenges. IEEE Commun Surv Tutor 17(3):1455–1472 (Third Quarter)Google Scholar
  21. FIA-NP. Collaborative Research: Named Data Networking Next Phase (NDN-NP, http://www.nsf.gov/awardsearch/showAward?AWD_ID=1345318
  22. FP7 CDAX Project. http://www.cdax.eu
  23. FP7 GreenICN Project. http://www.greenicn.org
  24. Gheorghe G, Avanesov T, Palattella MR, Engel T, Popoviciu C (2015) SDN-RADAR: network troubleshooting combining user experience and SDN capabilities. In: Proceedings of IEEE conference on network softwarization (NetSoft), London, April, 2015Google Scholar
  25. H2020 POINT Project. https://www.point-h2020.eu
  26. H2020 BONVOYAGE Project. http://bonvoyage2020.eu
  27. H2020 UMOBILE Project. http://umobileproject.eu
  28. Hoque AKMM, Amin SO, Alyyan A, Zhang B, Zhang L, Wang L (2013) NLSR: named-data link state routing protocol. In: Proceedings of ACM SIGCOMM workshop on information-centric networking, Hong Kong, China, August, 2013Google Scholar
  29. IRTF. Information-Centric Networking Research Group (ICNRG). https://irtf.org/icnrg
  30. Jacobson V, Smetters DK, Thornton JD, Plass MF, Briggs NH, Braynard RL (2009) Networking named content. In: Proceedings of the international Conference on emerging Networking EXperiments and Technologies (CoNEXT), Rome, December, 2009Google Scholar
  31. Khabbaz MJ, Assi CM, Fawaz WF (2012) Disruption-tolerant networking: a comprehensive survey on recent developments and persisting challenges. IEEE Commun Surv Tutor 14(2):607–640CrossRefGoogle Scholar
  32. Kirsch A, Mitzenmacher M, Varghese G (2010) Hash-based techniques for high-speed packet processing. In: Algorithms for next generation networks, Part of the series Computer Communications and Networks, Springer, Berlin, pp 181–218Google Scholar
  33. Kreutz D, Ramos FMV, Verissimo P, Rothenberg C, Azodolmolky S, Uhlig S (2015) Software-defined networking: a comprehensive survey. Proc IEEE 103(1):14–76CrossRefGoogle Scholar
  34. Lederer S, Posch D, Timmerer C, Westphal C, Azgin A, Liu S, Mueller C, Detti A, Corujo D (2015) Adaptive video streaming over ICN. IRTF Internet Draft, draft-irtf-icnrg-videostreaming-03, Feb 2015Google Scholar
  35. Lindgren A, Ben Abdesslem F, Ahlgren B, Schelen O, Malik A (2015) Applicability and tradeoffs of information-centric networking for efficient IoT. IRTF Internet Draft, draft-lindgren-icnrg-efficientiot-03, July 2015Google Scholar
  36. Liu W, Ren J, Wang J (2013) A unified framework for software-defined information-centric network. IETF Intrnet-Draft, draft-icn-implementation-sdn-00, Aug 2013Google Scholar
  37. Mosko M (2015) CCNx end-to-end fragmentation. Internet-Draft, Jan 2015Google Scholar
  38. Mosko M, Solis I (2015) CCNx messages in TLV format. IRTF Internet Draft, draft-irtf-icnrg-ccnxmessages-01, March 2015Google Scholar
  39. Mosko M, Solis I (2015) CCNx semantics. IRTF Internet Draft, draft-mosko-icnrg-ccnxsemantics-01, March 2015Google Scholar
  40. Narayanan A, Previdi S, Field B (2012) BGP advertisements for content URIs. IETF ICNRG WG, Internet-Draft, July 2012Google Scholar
  41. Nguyen XN, Saucez D, Turletti T (2013) Efficient caching in content-centric networks using OpenFlow. In: Proceedings of international conference on computer communications (INFOCOM), workshop, Milan, April 2013Google Scholar
  42. ONF (2013) OpenFlow Switch Specification v. 1.4, Oct 2013Google Scholar
  43. Ooka A, Ata S, Koide T, Shimonishi H, Murata M (2013) OpenFlow-based content-centric networking architecture and router implementation. In: Proceedings of IEEE future network and mobile summit, Lisboa, July 2013Google Scholar
  44. Pan J, Paul S, Jain R (2011) A survey of the research on future internet architectures. IEEE Commun Mag 49(7):26–36CrossRefGoogle Scholar
  45. Pentikousis K, Ohlman B, Davies E, Spirou S, Boggia G (2015) Information-centric networking: evaluation methodology. IRTF Internet Draft, draft-irtf-icnrg-evaluation-methodology-02, July 2015Google Scholar
  46. Pentikousis K, Ohlman B, Corujo D, Boggia G, Tyson G, Davies E, Molinaro A, Eum S (2015) Information-centric networking: baseline scenarios. RFC 7476, March 2015Google Scholar
  47. Perino D, Varvello M (2011) A reality check for content centric networking. In: Proceedings of ACM SIGCOMM workshop on information centric networking (ICN), Toronto, Canada, Aug 2011Google Scholar
  48. Perino D, Varvello M, Linguaglossa L, Laufer R, Boislaigue R (2012) Caesar: a content router for high-speed forwarding on content names. In: Proceedings of IEEE/ACM symposium on architectures for networking and communication systems (ANCS), Marina del Rey, Oct 2012Google Scholar
  49. Piro G, Grieco LA, Boggia G, Chatzimisios P (2014) Information-centric networking and multimedia services: present and future challenges. Trans Emerg Telecommun Technol 25(4):392–406CrossRefGoogle Scholar
  50. Quan W, Xu C, Guan J, Zhang H, Grieco LA (2014) Scalable name lookup with adaptive prefix bloom filter for named data networking. IEEE Commun Lett 18(1):102–105CrossRefGoogle Scholar
  51. Sadiku M, Musa S, Momoh O (2014) Cloud computing: opportunities and challenges. IEEE Potentials 33(1):34–36CrossRefGoogle Scholar
  52. Salsano S, Blefari-Melazzi N, Detti A, Morabito G, Veltri L (2013) Information centric networking over SDN and OpenFlow: architectural aspects and experiments on OFELIA testbed. Comput Netw 57(16):3207–3221CrossRefGoogle Scholar
  53. So W, Narayan A, Oran D (2013) Named-data networking on a router: fast and DoS-resistant forwarding with hash tables. In: Proceedings of ACM/IEEE symposium on architectures for networking and communications systems (ANCS), San Jose, CA, Oct 2013Google Scholar
  54. Stapp M (2015a) NDN message format proposal. IRTF Internet Draft, draft-stapp-icnrg-ndn-msgs-00, Jan 2015Google Scholar
  55. Stapp M (2015b) NDN message format comparison. IRTF Internet Draft, draft-stapp-icnrg-ndn-msg-comparison-00, Jan 2015Google Scholar
  56. Syrivelis D, Parisis G, Trossen D, Flegkas P, Sourlas V, Korakis T, Tassiulas L (2012) Pursuing a software defined information-centric network. In: Proceedings of European workshop on SDN (EWSDN), Darmstadt, Oct 2012Google Scholar
  57. Vahlenkamp M, Schneider F, Kutscher D, Seedorf J (2013) Enabling information centric networking in IP networks using SDN. In: Proceedings of IEEE conference on software-defined networks for future networks and services (SDN4FNS) Trento, NovGoogle Scholar
  58. van Adrichem NLM, Kuipers FA (2015) NDNFlow: software-defined named data networking. In: Proceedings of IEEE conference on network softwarization (NetSoft), London, April 2015Google Scholar
  59. Varvello M, Perino D, Linguaglossa L (2013) On the design and implementation of a wire-speed pending interest table. In: Proceedings of IEEE INFOCOM workshop on emerging design choices in name-oriented networking, Turin, April 2013Google Scholar
  60. Veltri L, Morabito G, Salsano S, Blefari-Melazzi N, Detti A (2012) Supporting information-centric functionality in software defined networks. In: Proceedings of IEEE international conference on communications (ICC), Ottawa, June 2012Google Scholar
  61. Wang L, Hoque AKMM, Yi C, Alyyan A, Zhang B (2012) OSPFN: an OSPF based routing protocol for named data networking. NDN Technical Report NDN-0003, July 2012Google Scholar
  62. Xylomenos G, Ververidis CN, Siris VA, Fotiou N, Tsilopoulos C, Vasilakos X, Katsaros KV, Polyzos GC (2014) A survey of information-centric networking research. IEEE Commun Surv Tutor 16(2):1024–1049CrossRefGoogle Scholar
  63. Yeganeh S, Tootoonchian A, Ganjali Y (2013) On scalability of software defined Networking. IEEE Commun Mag 51(2):136–141CrossRefGoogle Scholar
  64. You W, Mathieu B, Truong P, Peltier J, Simon G (2012) DiPIT: a distributed bloom-filter based PIT table for CCN nodes. In: Proceedings of IEEE international conference on computer communications and networks (ICCCN), Munich, July 2012Google Scholar
  65. Yuan H, Crowley P (2014) Scalable pending interest table design: from principles to practice. In: Proceedings of IEEE international conference on computer communications (INFOCOM), Toronto, April 2014Google Scholar
  66. Yuan H, Crowley P (2015) Realiably scalable name prefix lookup. In: Proceedings of ACM/IEEE symposium on architectures for networking and communications systems (ANCS), Oakland, CA, May 2015Google Scholar
  67. Yuan H, Song T, Crowley P (2012) Scalable NDN forwarding: concepts, issues, principles. In: Proceedings of international conference on computer communication networks (ICCCN), Munich, July 2012Google Scholar
  68. Zhang L, Afanasyev A, Burke J, Jacobson V, Claffy K, Crowley P, Papadopoulos C, Wang L, Zhang B (2014) Named data networking. Proc ACM SIGCOMM Comput Commun Rev (CCR) 44(3):66–73CrossRefGoogle Scholar
  69. Zhang Y, Raychadhuri D, Grieco LA, Baccelli E, Burke J, Ravindran R, Wang G (2015a) ICN based architecture for IoT—requirements and challenges. IRTF Internet Draft, draft-zhang-iot-icn-challenges-02, July 2015Google Scholar
  70. Zhang Y, Raychadhuri D, Grieco LA, Ravindran R, Wang G (2015b) ICN based architecture for IoT. IRTF Internet Draft, draft-zhang-icn-iot-architecture-01, July 2015Google Scholar

Copyright information

© Springer-Verlag London 2016

Authors and Affiliations

  • G. Piro
    • 1
  • S. Signorello
    • 2
  • M. R. Palattella
    • 2
  • L. A. Grieco
    • 1
    Email author
  • G. Boggia
    • 1
  • T. Engel
    • 2
  1. 1.Dip. di Elettrotecnica ed ElettronicaPolitecnico di BariBariItaly
  2. 2.SnTUniversity of LuxembourgWeickerLuxembourg

Personalised recommendations