Round-Efficient Black-Box Construction of Composable Multi-Party Computation

Article

Abstract

We present a round-efficient black-box construction of a general multi-party computation (MPC) protocol that satisfies composability in the plain model. The security of our protocol is proven in the angel-based UC framework [Prabhakaran and Sahai, STOC’04] under the minimal assumption of the existence of semi-honest oblivious transfer protocols. The round complexity of our protocol is \(\max (\widetilde{O}(\log ^2n), O(R_{{{{\mathsf {O}}}{{\mathsf {T}}}}}))\) when the round complexity of the underlying oblivious transfer protocol is \(R_{{{{\mathsf {O}}}{{\mathsf {T}}}}}\). Since constant-round semi-honest oblivious transfer protocols can be constructed under standard assumptions (such as the existence of enhanced trapdoor permutations), our result gives a \(\widetilde{O}(\log ^2n)\)-round protocol under these assumptions. Previously, only an \(O(\max (n^{\epsilon }, R_{{{{\mathsf {O}}}{{\mathsf {T}}}}}))\)-round protocol was shown, where \(\epsilon >0\) is an arbitrary constant. We obtain our MPC protocol by constructing a \(\widetilde{O}(\log ^2n)\)-round CCA-secure commitment scheme in a black-box way under the assumption of the existence of one-way functions.

Keywords

Multi-party computation Composability Angel-based UC security Black-box construction CCA-secure commitment 

References

  1. 1.
    B. Barak, How to play almost any mental game over the net - Concurrent composition via super-polynomial simulation, in 46th FOCS (IEEE Computer Society Press, October 2005), pp. 543–552Google Scholar
  2. 2.
    R. Canetti, Universally composable security: A new paradigm for cryptographic protocols, in 42nd FOCS (IEEE Computer Society Press, October 2001), pp. 136–145Google Scholar
  3. 3.
    S.G. Choi, D. Dachman-Soled, T. Malkin, Hoeteck Wee, Black-box construction of a non-malleable encryption scheme from any semantically secure one, in R. Canetti, editor, TCC 2008, vol. 4948 of LNCS (Springer, Heidelberg, March 2008), pp. 427–444Google Scholar
  4. 4.
    S.G. Choi, D. Dachman-Soled, T. Malkin, H. Wee, Simple, black-box constructions of adaptively secure protocols, in O. Reingold, editor, TCC 2009, vol. 5444 of LNCS (Springer, Heidelberg, March 2009), pp. 387–402Google Scholar
  5. 5.
    S.G. Choi, D. Dachman-Soled, T. Malkin, H. Wee, A black-box construction of non-malleable encryption from semantically secure encryption. J. Cryptol. (2017)Google Scholar
  6. 6.
    R. Canetti, M. Fischlin, Universally composable commitments, in J. Kilian, editor, CRYPTO 2001, vol. 2139 of LNCS (Springer, Heidelberg, August 2001), pp. 19–40Google Scholar
  7. 7.
    R. Canetti, E. Kushilevitz, Y. Lindell, On the limitations of universally composable two-party computation without set-up assumptions. J. Cryptol. 19(2), 135–167 (2006)Google Scholar
  8. 8.
    R. Canetti, Y. Lindell, R. Ostrovsky, A. Sahai, Universally composable two-party and multi-party secure computation, in 34th ACM STOC (ACM Press, May 2002), pp. 494–503Google Scholar
  9. 9.
    R. Canetti, H. Lin, R. Pass, Adaptive hardness and composable security in the plain model from standard assumptions, in 51st FOCS (IEEE Computer Society Press, October 2010), pp. 541–550Google Scholar
  10. 10.
    R. Canetti, H. Lin, R. Pass, Adaptive hardness and composable security in the plain model from standard assumptions. SIAM J. Comput. 45(5), 1793–1834 (2016)Google Scholar
  11. 11.
    D. Dolev, C. Dwork, M. Naor, Nonmalleable cryptography. SIAM J. Comput. 30(2), 391–437 (2000)Google Scholar
  12. 12.
    C. Dwork, M. Naor, O. Reingold, L. Stockmeyer, Magic functions. J. ACM 50(6), 852–921 (2003)Google Scholar
  13. 13.
    S. Garg, V. Goyal, A. Jain, A. Sahai, Concurrently secure computation in constant rounds, in D. Pointcheval and T. Johansson, editors, EUROCRYPT 2012, vol. 7237 of LNCS (Springer, Heidelberg, April 2012), pp. 99–116Google Scholar
  14. 14.
    V. Goyal, C.-K. Lee, R. Ostrovsky, I. Visconti, Constructing non-malleable commitments: A black-box approach, in 53rd FOCS (IEEE Computer Society Press, October 2012), pp. 51–60Google Scholar
  15. 15.
    V. Goyal, H. Lin, O. Pandey, R. Pass, A. Sahai, Round-efficient concurrently composable secure computation via a robust extraction lemma, in Y. Dodis and J.B. Nielsen, editors, TCC 2015, Part I, vol. 9014 of LNCS (Springer, Heidelberg, March 2015), pp. 260–289Google Scholar
  16. 16.
    O. Goldreich, S. Micali, A. Wigderson, How to play any mental game or A completeness theorem for protocols with honest majority, in A. Aho, editor, 19th ACM STOC (ACM Press, May 1987), pp. 218–229Google Scholar
  17. 17.
    V. Goyal, Constant round non-malleable protocols using one way functions, in L. Fortnow and S.P. Vadhan, editors, 43rd ACM STOC (ACM Press, June 2011), pp. 695–704Google Scholar
  18. 18.
    I. Haitner, Semi-honest to malicious oblivious transfer - the black-box way, in R. Canetti, editor, TCC 2008, vol. 4948 of LNCS (Springer, Heidelberg, March 2008), pp. 412–426Google Scholar
  19. 19.
    I. Haitner, Y. Ishai, E. Kushilevitz, Y. Lindell, E. Petrank, Black-box constructions of protocols for secure computation. SIAM J. Comput. 40(2), 225–266 (2011)Google Scholar
  20. 20.
    J. Håstad, R. Impagliazzo, L.A. Levin, M. Luby, A pseudorandom generator from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)Google Scholar
  21. 21.
    Y. Ishai, E. Kushilevitz, Y. Lindell, E. Petrank, Black-box constructions for secure computation, in J.M. Kleinberg, editor, 38th ACM STOC (ACM Press, May 2006), pp. 99–108Google Scholar
  22. 22.
    Y. Ishai, M. Prabhakaran, A. Sahai, Founding cryptography on oblivious transfer - efficiently, in D. Wagner, editor, CRYPTO 2008, vol. 5157 of LNCS (Springer, Heidelberg, August 2008), pp. 572–591Google Scholar
  23. 23.
    S. Kiyoshima, Y. Manabe, T. Okamoto, Constant-round black-box construction of composable multi-party computation protocol, in Y. Lindell, editor, TCC 2014, vol. 8349 of LNCS (Springer, Heidelberg, February 2014), pp. 343–367Google Scholar
  24. 24.
    H. Lin, R. Pass, Black-box constructions of composable protocols without set-up, in R. Safavi-Naini and R. Canetti, editors, CRYPTO 2012, vol. 7417 of LNCS (Springer, Heidelberg, August 2012), pp. 461–478Google Scholar
  25. 25.
    H. Lin, R. Pass, M. Venkitasubramaniam, Concurrent non-malleable commitments from any one-way function, in R. Canetti, editor, TCC 2008, vol. 4948 of LNCS (Springer, Heidelberg, March 2008), pp. 571–588Google Scholar
  26. 26.
    T. Malkin, R. Moriarty, N. Yakovenko, Generalized environmental security from number theoretic assumptions, in S. Halevi and T. Rabin, editors, TCC 2006, vol. 3876 of LNCS (Springer, Heidelberg, March 2006), pp. 343–359Google Scholar
  27. 27.
    D. Micciancio, S.J. Ong, A. Sahai, S.P. Vadhan, Concurrent zero knowledge without complexity assumptions, in S. Halevi and T. Rabin, editors, TCC 2006, vol. 3876 of LNCS (Springer, Heidelberg, March 2006), pp. 1–20Google Scholar
  28. 28.
    M. Naor, Bit commitment using pseudorandomness. J. Cryptol. 4(2), 151–158 (1991)Google Scholar
  29. 29.
    R. Pass, Simulation in quasi-polynomial time, and its application to protocol composition, in E. Biham, editor, EUROCRYPT 2003, vol. 2656 of LNCS (Springer, Heidelberg, May 2003), pp. 160–176Google Scholar
  30. 30.
    R. Pass, H. Lin, M. Venkitasubramaniam, A unified framework for UC from only OT, in X. Wang and K. Sako, editors, ASIACRYPT 2012, vol. 7658 of LNCS (Springer, Heidelberg, December 2012), pp. 699–717Google Scholar
  31. 31.
    M. Prabhakaran, A. Rosen, A. Sahai, Concurrent zero knowledge with logarithmic round-complexity, in 43rd FOCS (IEEE Computer Society Press, November 2002), pp. 366–375Google Scholar
  32. 32.
    M. Prabhakaran, A. Sahai, New notions of security: Achieving universal composability without trusted setup, in L. Babai, editor, 36th ACM STOC (ACM Press, June 2004), pp. 242–251Google Scholar
  33. 33.
    R. Pass, W.-L.D. Tseng, M. Venkitasubramaniam, Concurrent zero knowledge, revisited. J. Cryptol. 27(1), 45–66 (2014).Google Scholar
  34. 34.
    R. Pass, H. Wee, Black-box constructions of two-party protocols from one-way functions, in O. Reingold, editor, TCC 2009, vol. 5444 of LNCS (Springer, Heidelberg, March 2009), pp. 403–418Google Scholar
  35. 35.
    R. Richardson, J. Kilian, On the concurrent composition of zero-knowledge proofs, in J. Stern, editor, EUROCRYPT’99, vol. 1592 of LNCS (Springer, Heidelberg, May 1999), pp. 415–431Google Scholar
  36. 36.
    H. Wee, Black-box, round-efficient secure computation via non-malleability amplification, in 51st FOCS (IEEE Computer Society Press, October 2010), pp. 531–540Google Scholar

Copyright information

© International Association for Cryptologic Research 2018

Authors and Affiliations

  1. 1.NTT Secure Platform LaboratoriesTokyoJapan

Personalised recommendations